K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.

13 tháng 11 2017

1.

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}-\dfrac{1}{4!}+...+\)\(\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

13 tháng 11 2017

2.

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\)\(\dfrac{1}{100!}\)

Ta có:

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+\dfrac{3.4}{4!}-\dfrac{1}{4!}+...+\)\(\dfrac{99.100}{100!}-\dfrac{1}{100}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+\dfrac{3.4}{4!}+...+\dfrac{99.100}{100!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)\)\(-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

3 tháng 4 2017

Ta có:

\(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+...+\dfrac{99.100-1}{100!}\)

\(=\dfrac{1.2}{2!}-\dfrac{1}{2!}+\dfrac{2.3}{3!}-\dfrac{1}{3!}+...+\dfrac{99.100}{100!}-\dfrac{1}{100!}\)

\(=\left(\dfrac{1.2}{2!}+\dfrac{2.3}{3!}+...+\dfrac{99.100}{100!}\right)-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=\left(1+1+\dfrac{1}{2!}+...+\dfrac{1}{98!}\right)-\left(\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{100!}\right)\)

\(=1+1-\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=2-\dfrac{1}{99!}-\dfrac{1}{100!}< 2\)

Vậy \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+...+\dfrac{99.100-1}{100!}< 2\) (Đpcm)

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

b) \(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2018}\right)\)

\(=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}....\frac{2018-1}{2018}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2017}{2018}=\frac{1.2.3...2017}{2.3.4...2018}=\frac{1}{2018}\)

c) Giữa các biểu thức là dấu nhân hay dấu cộng vậy bạn?

AH
Akai Haruma
Giáo viên
9 tháng 7 2018

d)

\(D=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(D=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

e) \(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)

\(2E=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(2E=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{99-97}{97.99}\)

\(2E=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

\(\Rightarrow E=\frac{16}{99}\)

12 tháng 8 2017

1) Ta có :

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

Vậy \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\rightarrowđpcm\)

2) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow A=1-\dfrac{1}{100}\)

\(\Leftrightarrow A=\dfrac{99}{100}\)

15 tháng 8 2017

Cảm ơn bạn nhưng cho mình hỏi đpcm là gì thế?