Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\dfrac{a}{1+a}+\dfrac{2b}{2+b}+\dfrac{3c}{3+c}\le\dfrac{6}{7}\)
\(\Leftrightarrow1-\dfrac{a}{1+a}+2-\dfrac{2b}{2+b}+3-\dfrac{3c}{3+c}\ge6-\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\ge\dfrac{36}{7}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a+1}+\dfrac{4}{b+2}+\dfrac{9}{c+3}\)
\(\ge\dfrac{\left(1+2+3\right)^2}{a+b+c+6}=\dfrac{36}{7}=VP\)
Xảy ra khi \(a=\dfrac{1}{6};b=\dfrac{1}{3};c=\dfrac{1}{2}\)
2) \(\dfrac{1}{x}+\dfrac{25}{y}+\dfrac{64}{z}=\dfrac{4}{4x}+\dfrac{225}{9y}+\dfrac{1024}{16z}\ge\dfrac{\left(2+15+32\right)^2}{4x+9y+6z}=49\)
Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
Bài 2:
1: ĐKXĐ: 4x+1>=0 và 9-x<>0
=>x>=-1/4 và x<>9
2: ĐKXĐ: 4x+7>0 hoặc 7-x>0
=>x>-7/4 hoặc x<7
3: ĐKXĐ: 6x+7/3-x>=0
=>(6x+7)/(x-3)<=0
=>-7/6<=x<3
4: ĐKXĐ: (3-x)(3+x)>0
=>-3<x<3
a: ĐKXĐ: 3-2x>=0
=>x<=3/2
b: DKXĐ: \(\left\{{}\begin{matrix}4x+1>=0\\-2x+1>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\x< =\dfrac{1}{2}\end{matrix}\right.\)
c: ĐKXĐ: x^2+2x-5<>0
hay \(x\ne-1\pm\sqrt{6}\)
d: ĐKXĐ: 2-x>0 và 4x+3>=0
=>x>=-3/4 và x<2
e: ĐKXĐ: (x+10)(x-2)<>0 và x>=-9
=>x>=-9 và x<>2
5. \(y=\dfrac{-3x}{x+2}\)
xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)
vậy D= (\(-\infty;+\infty\))\{-2}
6. \(y=\sqrt{-2x-3}\)
xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)
vậy D= (\(-\infty;\dfrac{-3}{2}\)]
7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)
xác định khi: x-4 >0 <=> x>4
vậy D= (\(4;+\infty\))
8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)
vậy D= (\(-\infty;5\))\ {3}
9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)
xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)
vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]
1. \(y=\dfrac{3x-2}{x^2-4x+3}\)
xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)
2.\(y=2\sqrt{5-4x}\)
xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)
vậy D= (\(-\infty;\dfrac{5}{4}\)]
3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)
vậy D= (\(-3;\dfrac{5}{2}\)]
4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)
Vậy D= [\(-2;9\)]\{2}
a. R / \(\left\{-2\right\}\)
b. R / \(\left\{4;-1\right\}\)
c. R ( mẫu luôn > 0 )
d. \(\left(2;+\infty\right)\)
e. \(\left(-\infty;\dfrac{5}{6}\right)\)
f. \(\left(2;+\infty\right)\)
g. \(\left(1;3\right)\)
h. \(\left(5;+\infty\right)\)
i. \(\left(1;+\infty\right)\)
k. \(\left(-\infty;2\right)\)
l. R/\(\left\{\pm3\right\}\)
m. \(\left(-2;+\infty\right)/\left\{3\right\}\)
1) b)
Phương trình trên tương đương
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}-\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{x^2-2x-33}{\left(x+3\right)\left(x+5\right)}\)
ĐKXĐ: \(x\ne-3;x\ne-4;x\ne-5\)
\(\dfrac{x+3-x-5}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}=\dfrac{\left(x^2-2x-33\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)\left(x+5\right)}\)
\(-2=x^3+4x^2-2x^2-8x-33x-132\)
\(x^3+2x^2-41x-130=0\)
\(x^3+5x^2-3x^2-15x-26x-130=0\)
\(x^2\left(x+5\right)-3x\left(x+5\right)-26\left(x+5\right)=0\)
\(\left(x^2-3x-26\right)\left(x+5\right)=0\)
\(\Rightarrow x=-5\)(Loại)
\(x^2-3x-26=0\)
Phân tích thành nhân tử cũng được nhưng nếu box lớp 10 thì chơi kiểu khác
\(\Delta=\left(-3\right)^2-4.1.\left(-26\right)=113\)
\(x_1=\dfrac{3-\sqrt{113}}{2}\)
\(x_2=\dfrac{3+\sqrt{113}}{2}\)
Phương trình có 2 nghiệm trên
5) 0<a<b, ta có: a<b
<=> a.a<a.b
<=>a2<a.b
<=>\(a< \sqrt{ab}\)(1)
- BĐT Cauchy:
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) khi \(a\ge0;b\ge0\)
\(\Leftrightarrow\sqrt{ab}\le\dfrac{a+b}{2}\)
Dấu = xảy ra khi a=b=0 mà 0<a<b
=> \(\sqrt{ab}< \dfrac{a+b}{2}\)(2)
- 0<a<b, ta có: a<b<=> a+b<b+b
\(\Leftrightarrow\)\(\dfrac{a+b}{2}< \dfrac{b+b}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}< b\left(3\right)\)
Từ (1), (2), (3), ta có đpcm
1) \(\dfrac{x}{3}=\dfrac{y}{4}=t\Leftrightarrow\left\{{}\begin{matrix}x=3t\\y=4t\end{matrix}\right.\)
ta có \(x.y^2=324\Leftrightarrow3t.\left(4t\right)^2=324\)
\(\Leftrightarrow t^3=\dfrac{27}{4}\)
\(\Leftrightarrow t=\dfrac{3}{\sqrt[3]{4}}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3.\dfrac{3}{\sqrt[3]{4}}=\dfrac{9}{\sqrt[3]{4}}\\y=4.\dfrac{3}{\sqrt[3]{4}}=\dfrac{12}{\sqrt[3]{4}}\end{matrix}\right.\)
2) \(2^{x+1}.3^y=2^{2x}.3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
3) \(\dfrac{a}{b}=\dfrac{c}{d}\)
áp dụng dãy tỉ số = nhau ta có
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-c}{b-d}\)
\(\Leftrightarrow\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\left(\dfrac{a-c}{b-d}\right)^4\left(1\right)\)
mà \(\dfrac{a^4}{b^4}=\dfrac{c^4}{d^4}=\dfrac{a^4+c^4}{b^4+c^4}\left(2\right)\)
từ (1)(2) suy ra đpcm
4) \(B=\dfrac{27^{15}.5^3.8^4}{25^2.81^{11}.2^{11}}=\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{3.2}{5}=\dfrac{6}{5}\)
Chọn A
a