Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách dựng:
- Dựng đoạn BC = 5cm
- Dựng góc ∠ CBx = 35 0
- Dựng CA ⊥ Bx ta có ∆ ABC dựng được.
Chứng minh: ∆ ABC có ∠ A = 90o, ∠ B = 35 0 , BC = 5cm. Thỏa mãn điều kiện bài toán.
Cách dựng:
- Dựng đoạn AC = 2cm.
- Dựng góc ∠ (CAx) bằng 90 0
- Dựng cung tròn tâm C bán kính 4,5cm cắt Ax tại B. Nối CB ta có ΔABC cần dựng .
Chứng minh:
∆ ABC có ∠ A = 90 0 , AC = 2 cm, BC = 4,5 cm.
Thỏa mãn điều kiện bài toán.
giả sử ta đã có tam giác ABC vuông tại B
áp dụng định lí py-ta-go vào tam giác ABC vuông tại B có:
BC2+AB2=AC2
22+AB2=42
4+AB2=16
AB2=12
=>AB=\(\sqrt{12}\)(cm)
Các bước vẽ :
B1: vẽ đoạn thẳng AC = 4cm
B2: dùng com-pa vẽ một đường tròn tâm A bán kính 2 cm
B3: dùng com-pa vẽ một đường tròn tâm AB bán kính \(\sqrt{12}cm\)
B4 : 2 đường tròn cắt nhau tại một điểm điểm đó là B nói 3 điểm A;B;C lại với nhau ta được tam giác ABC vuông tại B có cạnh huyền AC=4cm cạnh góc vuông BC=2cm
bài này cần 4 bước:
- Phân tích
- dựng hình
- chứng minh
-biện luận
Bài giải:
Sử dụng phương pháp dựng tam giác vuông đã được học.
Học sinh tự vẽ hình
Ta lần lượt thực hiên:
- Vẽ đoạn BC = 4cm.
- Vẽ tia Bx tạo với BC một góc 650
- Vẽ đường thẳng a qua C và vuông góc với Bx và cắt Bx tại A.
Khi đó ∆ABC là tam giác cần dựng.
a) Phân tích
Giả sử dựng được ΔABC thỏa mãn yêu cầu đề bài.
Đoạn thẳng BC dựng được vì đã biết độ dài.
Khi đó điểm A là giao điểm của:
+ Tia Bx tạo với đoạn thẳng BC góc 65º
+ Đường thẳng qua C và vuông góc với tia Bx vừa dựng.
b) Cách dựng:
- Dựng đoạn thẳng BC = 4cm.
- Dựng tia Bx tạo với BC một góc 65º.
- Dựng đường thẳng a qua C và vuông góc với Bx.
- Bx cắt a tại A.
ΔABC là tam giác cần dựng.
c) Chứng minh: ΔABC vừa dựng vuông tại A, góc B = 65º và BC = 4cm.
d) Biện luận: Ta luôn dựng được một tam giác thỏa mãn điều kiện đề bài.