K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a) \(63^7\)và \(16^{12}\)
Có \(63^7< 64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\)=) \(63^7< 16^{12}\)
b) \(17^{14}\)và \(31^{11}\)
Có \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
Vì \(2^{56}>2^{55}\Rightarrow17^{14}>16^{14}>32^{11}>31^{11}\)
=) \(17^{14}>31^{11}\)
c) \(2^{67}\)và \(5^{21}\)
Có \(5^{21}< 8^{21}=\left(2^3\right)^{21}=2^{63}\)
Vì \(2^{67}>2^{63}\Rightarrow2^{67}>8^{21}>5^{21}\)
=) \(2^{67}>5^{21}\)

20 tháng 6 2017

a/ \(63^7< 64^7=\left(4^3\right)^7=4^{21}\)

    \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Suy ra \(63^7< 4^{21}< 4^{24}=16^{12}\)

Vậy \(63^7< 16^{12}\)

    

6 tháng 6 2018

\(-\frac{1}{7}\)và \(-\frac{5}{35}\)

Ta có:\(\frac{-5}{35}=\frac{-5:5}{35:5}=\frac{-1}{7}\)

\(\Rightarrow\frac{-1}{7}=\frac{-5}{35}\)

km mk nha@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

6 tháng 6 2018

ta có \(\frac{-5}{35}\)\(\frac{-1}{7}\)

suy ra \(\frac{-1}{7}\)\(\frac{-5}{35}\)

ta có \(-0,6\)\(\frac{-3}{5}\)=\(\frac{-9}{15}\)

         \(\frac{2}{-3}\)\(\frac{-2}{3}\)\(\frac{-10}{15}\)

mà \(\frac{-9}{15}\)\(\frac{-10}{15}\)

suy ra \(-0,6\)\(\frac{2}{-3}\)

ta có \(-1\frac{3}{4}\)\(\frac{-7}{4}\)\(-1,75\)

mà \(1,25\)\(-1,75\)

suy ra \(-1\frac{3}{4}\)\(1,25\)

      

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

21 tháng 9 2020

a) Ta có : \(31^5< 32^5=\left(2^5\right)^5=2^{25}< 2^{28}=\left(2^4\right)^7=16^7< 17^7\)

\(\Rightarrow31^5< 17^7\)

b) Ta có : \(8^{12}=\left(2^3\right)^{12}=2^{36}>2^{32}=\left(2^4\right)^8=16^8>12^8\)

\(\Rightarrow8^{12}>12^8\)

c)  \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{99}\)

\(A=\frac{1-\frac{1}{99}}{2}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

a) \(31^5< 34^5=2^5.17^5=32.17^5\)

\(17^7=17^2.17^5=289.17^5\)

\(\Rightarrow31^5< 17^7\)

b) \(12^8< 16^8=\left(2^4\right)^8=2^{32}\)

\(8^{12}=\left(2^3\right)^{12}=2^{36}\)

\(\Rightarrow8^{12}>12^8\)

c) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3A-A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{1}{3^{99}}\)

\(\Rightarrow2A=1-\frac{1}{3^{99}}< 1\Rightarrow A< \frac{1}{2}\)

22 tháng 9 2017

Vì 2 < 3 và 22 < 32 => 222 < 332

3111<3211. Mà 3211=(25)11=255.

=>3111<255.

1714>1614. Mà 1614=(24)14=256.

Mà 255<256=>3111<255<256<1714=>3111<1714.

22 tháng 9 2017

222 và 322

Vì 2 < 3; 22 < 32 nên 222 < 332

3111 và 1714 

3111 = 319 . 312

1714 = 179 . 175

Mà 179 < 319 , 175 > 312 nên 3111 < 1714 

2 tháng 10 2017

\(Ta\)\(có\)\(5^{36}=\left(5^3\right)^{12}=125^{12}\)

\(11^{24}=\left(11^2\right)^{12}=121^{12}\)

\(Mà\)\(125^{12}>121^{12}\)

\(=>5^{36}>11^{24}\)

14 tháng 12 2017

Ta có:

 \(5^{36}=\left(5^3\right)^{12}=125^{12}\)

\(11^{24}=\left(11^2\right)^{12}=121^{12}\)

\(Do125>121\)

\(\Rightarrow125^{12}>121^{12}\)

\(\Rightarrow5^{36}>11^{24}\)

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs