Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>B=\(\frac{12.\left(\frac{1}{13}+\frac{1}{1313}+\frac{1}{131}+\frac{1}{1313}\right)}{15.\left(\frac{1}{13}+\frac{1}{1313}+\frac{1}{131}+\frac{1}{1313}\right)}\)
=>B=\(\frac{12}{15}\)
=>B=\(\frac{4}{5}\)
B = \(\frac{12.\left(\frac{1}{13}+\frac{1}{1313}+\frac{1}{131}-\frac{1}{1313}\right)}{15.\left(\frac{1}{13}+\frac{1}{131}-\frac{1}{1313}+\frac{1}{1313}\right)}\)
=\(\frac{12.\left(\frac{1}{13}+\frac{1}{131}\right)}{15.\left(\frac{1}{13}+\frac{1}{131}\right)}\)
=\(\frac{12}{15}=\frac{4}{5}\)
Vậy B = 4/5.
\(\dfrac{\left(12:13\right)+\left(12:131\right)-\left(12:1313\right)+\left(12:13131\right)}{\left(15:13\right)+\left(15:131\right)-\left(15:1313\right)+\left(15:13131\right)}\\ =\dfrac{12:\left(13+131-1313+13131\right)}{15:\left(13+131-1313+13131\right)}=\dfrac{12}{15}=\dfrac{4}{5}\)
a) \(\frac{5252}{7575}=\frac{52}{75};\frac{525252}{757575}=\frac{52}{75}\)
Vậy cả 3 phân số trên bằng nhau
b) \(\frac{1313}{1515}=\frac{13}{15};\frac{131313}{151515}=\frac{13}{15}\)
Vậy các phân số trên bằng nhau
\(\frac{52}{73}=\frac{52\cdot101}{73\cdot101}=\frac{5252}{7373}\)
\(\frac{52}{73}=\frac{52\cdot10101}{73\cdot10101}=\frac{525252}{737373}\)
\(A=\frac{17}{23}\cdot\frac{8}{16}\cdot\frac{23}{17}\cdot\left(-80\right)\cdot\frac{3}{4}\)\(=\frac{17\cdot4\cdot2\cdot23\cdot16\cdot\left(-5\right)\cdot3}{23\cdot16\cdot17\cdot4}\)
=> \(A=\frac{2\cdot\left(-5\right)\cdot3}{1}=-30\)
\(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{7}{12}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\cdot0=0\)
a)\(A=\frac{17}{23}.\frac{8}{16}.\frac{23}{17}.\left(-80\right).\frac{3}{4}\)
\(A=\left(\frac{17}{23}.\frac{23}{17}\right).\left(\frac{8}{16}.\frac{3}{4}\right).\left(-80\right)\)
\(A=\frac{3}{8}.\left(-80\right)\)
\(A=-30\)
b)\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).0\)
\(C=0\)
Bạn đợi chút nghe, tối nay mình làm cho