Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{x}+\frac{2}{y}\)
\(\Rightarrow\) \(3A=\left(\frac{1}{x}+\frac{2}{y}\right)\left(x+2y\right)\) (do \(x+2y=3\) )
nên \(3A=2\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) đối với bộ số không âm gồm \(\left(\frac{x}{y};\frac{y}{x}\right)\) , ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Do đó, \(3A\ge2.2+5=9\)
Hay nói cách khác, \(A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy, \(A_{min}=3\) \(\Leftrightarrow\) \(x=y=1\)
dùng cô si ( AM - GM ) thêm bớt nhanh hơn .
dự đoán điểm rơi x = y = 1
Gải : \(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\left(1\right).\)
\(\frac{2}{y}+2y\ge2\sqrt{\frac{2}{y}.2y}=4\left(2\right).\)
cống vế với vế của (1) và (2) ta được : \(\frac{1}{x}+\frac{2}{y}+3\ge6\) ( do x + 2y = 3 )
=> \(\frac{1}{x}+\frac{2}{y}\ge3\)dấu "=" xẩy ra khi x = y = 1
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2
a) \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2\left(y^2+\frac{1}{x^2}\right)\)
\(+\frac{1}{y^2}\left(y^2+\frac{1}{x^2}\right)=x^2y^2+2+\frac{1}{x^2y^2}\)
\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)
Áp dụng BĐT Cauchy - Schwar cho 2 số không âm, ta được:
\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)
C/m được BĐT phụ: \(1=\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)
\(\Rightarrow M\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))
\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+\left(x+y\right)1}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\)
Tương tự \(\frac{16}{3x+2y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+z}\)
\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{y+z}\)
Cộng vế theo vế ta có:
\(16\left(\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}+\frac{1}{2x+3y+3z}\right)\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=24\)
\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\left(đpcm\right)\)
P/S:Có dùng S-vác ngược dấu ạ.ý tưởng tách mẫu là từ tth_new - Trang của tth_new - Học toán với OnlineMath nha !
bd toán 9
easy!
Ta có:
\(\frac{1}{x^3\left(2y-x\right)}+x^2+y^2=\frac{1}{x^2\left(2xy-x^2\right)}+x^2+\left(y^2+x^2-x^2\right)\)
Áp dụng bất đẳng thức AM-GM cho hai số không âm,ta được:
\(x^2+y^2\ge2xy\)
\(\Rightarrow\frac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge\frac{1}{x^2\left(2xy-x^2\right)}+x^2+\left(2xy-x^2\right)\)
Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:
\(\frac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge3\sqrt[3]{\frac{1}{x^2\left(2xy-x^2\right)}\cdot x^2\cdot\left(2xy-x^2\right)}=3\left(đpcm\right)\)
xong!