Chứng minh rằng \(x_0=^3\sqrt{38-17}\sqrt{5}+^3\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

đố anh làm được đấy

17 tháng 12 2021

Đáp án :

\(x_0=^3\sqrt{38-17}\sqrt{5}+^3\sqrt{38+17}.\sqrt{5}\)

\(=x_0=38-17\sqrt{5}+38+17\sqrt{5}-3^3\sqrt{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right).x_0}\)

\(=76-3^3\sqrt{-1}.x_0=76+3x_0\)

\(=x_0^3\)\(-3x_0-76=0\)

\(=\left(x_0-4\right)\left(x_0^2+4x_0+19\right)=0\)

\(=x_0=4\)

Thay x0 = 4 vào phương trình x3 - 3x2 - 2x - 8 = 0 ta có đẳng thức đúng là:

    43 - 3.42 - 2.4 - 8 = 0

    Vậy x0 là nghiệm của phương trình x3 - 3x2 - 2x - 8 = 0

NV
1 tháng 9 2020

\(x^3=76+3\sqrt[3]{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right)}\left(\sqrt[3]{38-17\sqrt{5}}+\sqrt[3]{38+17\sqrt{5}}\right)\)

\(\Leftrightarrow x^3=76-3x\)

\(\Leftrightarrow x^3+3x-76=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+19\right)=0\)

\(\Leftrightarrow x=4\)

\(\Rightarrow x^3-3x^2-2x-8=0\)

6 tháng 8 2015

\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{1}{3}\)

17 tháng 8 2017

kết quả bằng bn ạ?

4 tháng 10 2019

\(x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}=10+6x\)

Thay vào -> dpcm

4 tháng 10 2019

\(x=\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow x^3=5-\sqrt{17}+5+\sqrt{17}\)

\(+3\left(\sqrt[3]{5-\sqrt{17}}+\sqrt[3]{5+\sqrt{17}}\right)\sqrt[3]{5-\sqrt{17}}\sqrt[3]{5+\sqrt{17}}\)

\(\Leftrightarrow x^3=10+3x\sqrt[3]{\left(5-\sqrt{17}\right)\left(5+\sqrt{17}\right)}\)

\(\Leftrightarrow x^3=10+3x\sqrt[3]{8}\Leftrightarrow x^3=10+6x\)

\(\Leftrightarrow x^3-6x-10=0\)

\(\Rightarrow\) Đpcm

Chúc bạn học tốt !!!

Đặt \(x^2=t\left(t\ge0\right)\)

\(\Leftrightarrow t^2-16t+32=0\)

\(\Delta=\left(-16\right)^2-4.32=256-128=128>0\)

\(t_1=\frac{16-\sqrt{128}}{2}=8-4\sqrt{2};t_2=\frac{16+\sqrt{128}}{2}=8+4\sqrt{2}\)

Theo bài ra ta có : 

\(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

\(=\sqrt{2+\sqrt{3}}-\sqrt{3\left(2-\sqrt{2+\sqrt{3}}\right)}\)

tịt lun, cái pt căn này chill quá 

11 tháng 8 2020

 ๖²⁴ʱ๖ۣۜTɦủү❄吻༉ Mơn Bạn nha .

P/s : làm nháp thử mn sửa giúp nha ( thực ra em cũng chả hiểu cái gì cả T_T )

Ta có :

\(\left(x_0\right)^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)

\(\Rightarrow\left(\frac{8-\left(x_0\right)^2}{2}\right)^2=2+\sqrt{3}+3\left(2-\sqrt{3}\right)+2\sqrt{3\left(4-3\right)}=8\)

\(\Rightarrow64-16\left(x_0\right)^2+\left(x_0\right)^4=32\)

\(\Rightarrow\left(x_0\right)^4-16\left(x_0\right)^2+32=0\left(đpcm\right)\)