K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Vì \(\left\{ \begin{array}{l}KD \bot BC\\AB \bot BC\end{array} \right. \Rightarrow KD//AB\).

Xét tam giác \(CAB\) có \(KD//AB \Rightarrow \frac{{KD}}{{AB}} = \frac{{DC}}{{BC}}\) (hệ quả của định lí Thales).

\( \Rightarrow \frac{1}{{AB}} = \frac{{1,2}}{{24}} \Rightarrow AB = \frac{{24.1}}{{1,2}} = 20m\)

Vậy chiều cao \(AB\) của tòa nhà là 20m.

22 tháng 4 2017

- Đặt hai cọc thẳng đứng, di chuyển cọc 2 sao cho 3 điểm A,F,K nằm trên đường thẳng.

- Dùng sợi dây căng thẳng qua 2 điểm F và K để xác định điểm C trên mặt đất( 3 điểm F,K,C thẳng hàng).

b) ∆BC có AB // EF nên EFABEFAB = ECBCECBC => AB = EF.BCECEF.BCEC = h.abh.ab

Vậy chiều cao của bức tường là: AB = h.abh.ab.

4 tháng 4 2019

a) Cách tiến hành:

- Đặt hai cọc thẳng đứng, di chuyển cọc 2 sao cho 3 điểm A, F, K nằm trên đường thẳng.

- Dùng sợi dây căng thẳng qua 2 điểm F và K để xác định điểm C trên mặt đất (3 điểm F, K, C thẳng hàng).

b) ΔABC có AB // KD (D ∈ BC, K ∈ AC)

Giải bài 13 trang 64 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy chiều cao bức tường là Giải bài 13 trang 64 SGK Toán 8 Tập 2 | Giải toán lớp 8

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a) Cách tiến hành:

- Đặt hai cọc thẳng đứng, vuông góc với mặt đất sau đó di chuyển cọc 2 sao cho 3 điểm A, F, K thẳng hàng.

- Dùng sợi dây căng thẳng qua 2 điểm F và K để xác định điểm C trên mặt đất (3 điểm F, K, C thẳng hàng).

Sử dụng hệ quả của định lý Ta – let để tính chiều cao AB.

b) Ta có:

\(\left. \begin{array}{l}AB \bot BC\\DK \bot BC\end{array} \right\} \Rightarrow AB\parallel DK\)

Xét tam giác ABC với \(AB\parallel DK\) ta có:

\(\frac{{DK}}{{AB}} = \frac{{CD}}{{CB}}\) (Hệ quả của định lý Thales)

\( \Rightarrow AB = \frac{{DK.CB}}{{CD}} = \frac{{h.a}}{b}\).

22 tháng 4 2017

Lời giải

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi chiều cao của cây là h = A'C' và chọn một cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải:

Giả sử AB là cây cần do, CD là cọc EF là khoảng cách từ mắt tới chân.

∆KDF ∽ ∆HBF

=> HBKD=HFKFHBKD=HFKF

=> HB = HF.KDKFHF.KDKF

mà HF = HK + KF =AC + CE = 15 + 0,8 = 15.8m

KD = CD - CK = CD - EF = 2 - 1,6 = 0,4 m

Do đó: HB = 7,9 m

Vậy chiều cao của cây là 7,9 m.



29 tháng 11 2021
 

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔACB (vì DE // AC)

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Mà AB – DB = AD = 0,8

⇒ BD = 0,8.4 =3,2m; AB = 5.0,8 = 4m.

⇒ A'B = A'A + AD + DB = 15 + 0,8 + 3,2 = 19m

+ ΔACB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔA’C’B (vì AC // A’C’)

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy cây cao 9,5m.

29 tháng 11 2021

ĐÓ LÀ?????????

18 tháng 4 2020

C' A' A D B C E 2m 1,6m 15m 0,5m

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔACB (vì DE // AC)

\(\Rightarrow\frac{DE}{AC}=\frac{DB}{AB}\)

Mà AC = 2m , DE = 1,6m

nên \(\frac{1,6}{2}=\frac{DB}{AB}\Rightarrow\frac{DB}{AB}=\frac{4}{5}\Rightarrow\frac{DB}{4}=\frac{AB}{5}\)

Áp dụng t/c DTSBN , ta có:

\(\frac{DB}{4}=\frac{AB}{5}=\frac{AB-DB}{5-4}=\frac{AD}{1}=0,8\)

Suy ra :

\(\frac{DB}{4}=0,8\Rightarrow DB=0,8.4=3,2\)

\(\frac{AB}{5}=0,8\Rightarrow AB=0,8.5=4\)

Mà AB – DB = AD = 0,8

⇒ BD = 0,8.4 =3,2m; AB = 5.0,8 = 4m.

⇒ A'B = A'A + AD + DB = 15 + 0,8 + 3,2 = 19m

+ ΔACB ~ ΔA’C’B (vì AC // A’C’)

\(\Rightarrow\frac{AB}{A'B'}=\frac{AC}{A'C'}\)

\(\Rightarrow AC=\frac{AC.A'B'}{AB}=\frac{2.19}{4}=9,5\left(m\right)\)

Vậy cây cao 9,5m

14 tháng 5 2021

 Ta có: NM//AB

=> \(\dfrac{NM}{AB}=\dfrac{CN}{AC}< =>AB=1,5\cdot\dfrac{20}{1,25}=24\left(m\right)\)

Vậy tòa nhà đó cao 24m

14 tháng 5 2021

xen kiu bạn nha

Ta có:MN\(\perp\)CB

AB\(\perp\)CB

Do đó: MN//AB

Xét ΔCAB có MN//AB

nên \(\dfrac{MN}{AB}=\dfrac{CN}{CB}\)

=>\(\dfrac{1.5}{AB}=\dfrac{1.2}{6}=\dfrac{1}{5}\)

=>AB=1,5*5=7,5(m)