Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm số y xác định thì \(x-a\ge0;2x-a-1\ge0\), với mọi x dương.
Xét hàm số y = x - a, với \(x\ge0.\)
Min y = 0 - a = -a, khi x = 0.
Để \(x-a\ge0,\)với mọi x > 0 thì min \(y=-a\ge0\)hay \(a\le0.\)(1)
Xét hàm số: \(y=2x-a-1\)
Tương tự Min y = -a - 1, khi x = 0.
Để \(2x-a-1\ge0,\)với x > 0 thì min y = - a - 1 \(-a-1\ge0\Leftrightarrow a\le-1\). (2)
Kết hợp điều kiện (1) và (2) ta có:\(a\le-1\)là thỏa mãn đề bài.
Đây là lời giải dựa theo phương pháp " nhìn vấn đề theo quan điểm cực trị " ngoài ra các bạn có thể dùng hàm số đồng biến cũng lập luận gần giống.
Chú ý: x = 0 ta vẫn xét nhưng hiểu được thì các em pahir học qua hàm số liên tục ở lớp 11.
a) đk: \(x\ge0;x\ne1\)
b) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+\left(\sqrt{x}-1\right)\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)
\(A=\frac{2\left(x-2\sqrt{x}+1\right)}{\left(x-2\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{2}{x+\sqrt{x}+1}\)
c) Ta có: \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> \(\frac{2}{x+\sqrt{x}+1}>0\left(\forall x\ne1\right)\)
d) Ta chỉ có thể tìm GTLN thôi
Để A đạt GTLN => \(x+\sqrt{x}+1\) phải đạt GTNN
Dấu "=" xảy ra khi: \(x=0\)
Vậy Max(A) = 2 khi x = 0
1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)
Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)
\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)
\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)
\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)
\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)
\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)
2, a, Để đồ thị h/s đi qua gốc tọa độ thì x=y=0
Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)
b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)
Có: OA=2m+1; OB=|-2m-1|=2m+1
Áp dụng hệ thức lượng trong tam giác vuông coS:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)
\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)
\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)
c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)
Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)
Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x
Hàm số y xác định khi: \(\hept{\begin{cases}x+a-1\ne0\\2x-3a+4\ge0\end{cases}}\)
Xét hàm số: \(y=2x-3a+4\), \(x\ge0.\)
Hàm số y = 2x - 3a + 4 có hệ số a = 2 > 0 nên đồng biên trên R.
f(0) = -3a + 4
Suy ra: \(f\left(x\right)>f\left(0\right)\)với mọi x dương.
Để \(f\left(x\right)\ge0,\)với mọi x dương thì \(f\left(0\right)\ge0\Leftrightarrow-3a+4\ge0\Leftrightarrow a\le\frac{3}{4}.\)(1)
Xét: \(x+a-1\ne0\Leftrightarrow x\ne1-a.\)
Để y xác định với mọi x dương thì \(1-a\le0\Leftrightarrow a\ge1.\)(2)
Kết hợp (1) và (2) ta nhận thấy không có a thỏa mãn.