K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

Chắc chắn là đề bài sai rồi em

Đúng như đề em ghi thì a;b;c là số tự nhiên lớn hơn 9

Giả sử c là cạnh huyền, nghich đảo của c là \(\dfrac{1}{c}< 1\) làm sao bằng a hay b được?

30 tháng 7 2021

dạ  thầy ạ dể em xem lại đề bài đã.

15 tháng 10 2017

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

15 tháng 10 2017

ti le 3 canh la 3/4/5 (dinh li pytago)

2 canh goc vuong lan luot la

125 : 5 x 4 = 100

125 : 5 x 3 = 75 

6 tháng 4 2021

ko biết làm giúp bạn này với

11 tháng 11 2019

Có số đo gấp đôi góc còn lại nha! Ghi nhầm

11 tháng 11 2019

Cách của mình:

Cho tam giác ABC có AB=n-1 AC=n và BC=n+1

Điều kiện: n>2

và \(\widehat{A}>\widehat{B}>\widehat{C}\)

TH1: \(\widehat{A}=2\widehat{C}\)

tam giác ABC có: \(\frac{n+1}{sinA}=\frac{n-1}{sinC}\)

\(\Leftrightarrow\frac{n+1}{sin2C}=\frac{n-1}{sinC}\)

\(\Leftrightarrow\frac{n+1}{2\cdot cosC\cdot sinC}=\frac{n-1}{sinC}\)

\(\Leftrightarrow\frac{n+1}{2\cdot cosC}=n-1\)

\(\Rightarrow2\cdot cosC=\frac{n+1}{n-1}\)(1)

Đồng thời theo hệ thức Cosin:

\(n^2+\left(n+1\right)^2-2n\left(n+1\right)\cdot cosC=\left(n-1\right)^2\)

\(\Leftrightarrow2\cdot cosC=n^2+4n=\frac{n\left(n+4\right)}{n\left(n+1\right)}=\frac{n+4}{n+1}\)(2)

Từ (1) và (2):

Suy ra: n=5(thỏa)

Suy ra tam giác có cạnh là 4;5;6

Xét tiếp TH2: \(\widehat{A}=2\widehat{B}\)

TH3: \(\widehat{B}=2\widehat{C}\)

Cần 1 cách hay khác! Cảm ơn!

14 tháng 6 2017

Gọi tam giác vuông đó là tam giác ABC (góc BAC = 900),

\(\dfrac{AB}{AC}=\dfrac{3}{4}\&BC=125\left(cm\right)\) , gọi \(AH\perp BC=\left\{H\right\}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Leftrightarrow AB=AC\dfrac{3}{4}\left(1\right)\)

Áp dụng định lí Py-ta-go vào tam giác vuông ABC, có:

\(AB^2+AC^2=BC^2\left(2\right)\)

Thay (1) vào (2) ta được:

\(\left(\dfrac{3}{4}AC\right)^2+AC^2=BC^2\Leftrightarrow AC^2\dfrac{9}{16}+AC^2=BC^2\Leftrightarrow AC^2\dfrac{25}{16}=BC^2\)

Mà BC = 125cm

\(\Rightarrow AC^2\dfrac{25}{16}=125^2\Leftrightarrow AC^2=10000\Leftrightarrow AC=100\left(cm\right)\)

Thay AC = \(100\) vào (1) ta được:

\(AB=\dfrac{3}{4}.100=75\left(cm\right)\)

Ta lại có: \(AB^2=BC.BH\) (định lí 1)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{75^2}{125}=45\left(cm\right)\)

mà BH + CH = BC \(\Rightarrow CH=BC-BH=125-45=80\left(cm\right)\)

Vậy AB = 75cm, AC = 100cm, BH = 45cm, CH = 80cm

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5