K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Phương trình: \(2x^2-105x+a=0\Leftrightarrow x^2-105x+\frac{a}{2}=0\)không thể có nghiệm kép được vì 105 là số lẻ

Giả sử phương trình này có 2 nghiệm là b, c ta có

\(\hept{\begin{cases}2b^2-210b+a=0\left(1\right)\\2c^2-210c+a=0\left(2\right)\end{cases}}\)

Lấy (1) - (2) vế theo vế ta được

\(2b^2-210b-2c^2+210c=0\)

\(\Leftrightarrow\left(b-c\right)\left(b+c-105\right)=0\)

\(\Rightarrow b+c-105=0\Leftrightarrow b+c=105\)

\(\Rightarrow\)Một trong 2 số b hoặc c phải là số chẵn

Giả sử số chẵn đó là c thì ta có c = 2 ( vì c nguyên tố)

\(\Rightarrow b=103\)

Từ đây ta có:\(x^2-105x+\frac{a}{2}=\left(x-2\right)\left(x+103\right)=x^2-105x+206\)

\(\Rightarrow a=2.206=412\)

19 tháng 12 2016

Mọi người giải ra giúp ạ, cảm ơn nhiều!

20 tháng 12 2016

Ta có:

\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)

\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)

\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)

Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)

Tới đây thì không biết đi sao nữa :D

20 tháng 12 2016

thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình

19 tháng 3 2017

?????????????????????????????????????????????? Are you learning English or Math? I'm sure you are're mistake of English

19 tháng 3 2017

:v

24 tháng 12 2017

Dịch đề:Tìm số nguyên x sao cho \(A=x^2+x+6\)

Biết dịch vậy thôi à.

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lời giải:

Vì $x^3-ax^2+bx-2010$ có 3 nghiệm nguyên dương nên ta có thể viết $x^3-ax^2+bx-2010=(x-m)(x-n)(x-p)$ với $m,n,p$ đôi một phân biệt, là các số nguyên dương- nghiệm của $f(x)$

Khai triển ta có:

$x^3-ax^2+bx-2010=x^3-x^2(m+n+p)+x(mn+mp+np)-mnp$

Đồng nhất hệ số thu được:

\(\left\{\begin{matrix} m+n+p=a\\ mnp=2010\end{matrix}\right.\)

Không mất tổng quát giả sử $m>n>p$ thì $m^3> mnp=2010\Rightarrow m\geq 12$ và $m= \frac{2010}{np}\leq \frac{2010}{1.2}=1005$

$m$ lại là ước của $2010$ nên ta suy ra $m$ có thể nhận các giá trị:

$m=134; m=15; m=201; m=335;m=402;m=30; m=1005; m=670$

Từ đây ta có những bộ số thỏa mãn là:

$(m,n,p)=(134; 15; 1); (134; 5;3); (201; 5;2); (201; 10;1); (335; 6; 1); (335; 3;2); (402; 5;1); (1005; 2;1)$

Từ đây kiểm tra xem bộ nào thỏa $a=m+n+p$ min ta thấy $a_{\min}=134+5+3=142$

 

 

 

16 tháng 10 2022

n=3; n=2