K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\) 

\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)

b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\) 

\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)

13 tháng 11 2023

Làm mỗi ý a,b cũng được ạ

16 tháng 10 2021

a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)

Áp dụng t/c dãy tỏ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

16 tháng 10 2021

b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)

6 tháng 8 2017

Dựa vào tỉ số bằng nhau ta đc:

a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

       Áp dụng t/c dãy tỉ số bằng nhau ta đc:

             \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)

       Các câu kia tg tự nha

6 tháng 8 2017

c) 

\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5 

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

   \(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)

\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)

\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)

Vậy...

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1 2024

bài 1 đâu hả bạn 

 

8 tháng 6 2018

a/ Ta có x, y tỉ lệ với 2, 3 => \(\frac{x}{2}=\frac{y}{3}\)

và \(x+y=-15\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{-15}{5}=-3\)

=> \(\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{3}=-3\end{cases}}\)=> \(\hept{\begin{cases}x=-6\\y=-9\end{cases}}\)

b/ Ta có \(\frac{x}{y}=\frac{7}{20}\)

=> \(\frac{x}{7}=\frac{y}{20}\)

=> \(\frac{x}{7}.\frac{1}{7}=\frac{y}{20}.\frac{1}{7}\)

=> \(\frac{x}{49}=\frac{y}{140}\)(1)

và \(\frac{y}{z}=\frac{7}{3}\)

=> \(\frac{y}{7}=\frac{z}{3}\)

=> \(\frac{y}{7}.\frac{1}{20}=\frac{z}{3}.\frac{1}{20}\)

=> \(\frac{y}{140}=\frac{z}{60}\)(2)

Từ (1) và (2)

=> \(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\)

Đến đây là thiếu đề rồi bạn!!!

c/ Ta có \(\frac{3}{y}=\frac{7}{x}\)

=> \(\frac{y}{3}=\frac{x}{7}\)

và \(x+16=y\)

=> \(x-y=-16\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> \(\hept{\begin{cases}\frac{x}{7}=-4\\\frac{y}{3}=-4\end{cases}}\)=> \(\hept{\begin{cases}x=-28\\y=-12\end{cases}}\)

d/ Ta có x, y tỉ lệ với 5 và 3

=> \(\frac{x}{5}=\frac{y}{3}\)

=> \(\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)

=> \(\hept{\begin{cases}\frac{x}{5}=\frac{1}{4}\\\frac{y}{3}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{5}{4}\\y=\frac{3}{4}\end{cases}}\)

e/ Thiếu đề bạn ơi!!!

f/ Ta có \(3x=2y\)

=> \(\frac{x}{2}=\frac{y}{3}\)

=> \(\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)

=> \(\frac{x}{10}=\frac{y}{15}\)(1)

và \(7y=5z\)

=> \(\frac{y}{5}=\frac{z}{7}\)

=> \(\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\)

=> \(\frac{y}{15}=\frac{z}{21}\)(2)

Từ (1) và (2)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{2x}{20}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{20}=\frac{y}{15}=\frac{z}{21}=\frac{2x+y-z}{20+15-21}=\frac{-28}{14}=-2\)

=> \(\hept{\begin{cases}\frac{x}{10}=-2\\\frac{y}{15}=-2\\\frac{z}{21}=-2\end{cases}}\)=> \(\hept{\begin{cases}x=-20\\y=-30\\z=-42\end{cases}}\)

a) \(\frac{-9}{x}=\frac{x}{-49}\Leftrightarrow x^2=\left(-9\right)\left(-49\right)=441\Leftrightarrow x=\pm21\)

b) \(\frac{x}{3}=\frac{y}{5};x+y=-16\). Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-16}{8}=-2\Rightarrow x=-6;y=-10\)

c) \(\frac{x}{2}=\frac{y}{-5};y-x=-14\). Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{-5}=\frac{y-x}{-5-2}=\frac{-14}{-7}=2\Leftrightarrow x=4;y=-10\)

24 tháng 7 2016

2. 3x = 7y và x + y = 20

Ta có: 3x = 7y 

\(\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x+y}{7+3}=\frac{20}{10}=2\)

Vậy \(\frac{x}{7}=2\Rightarrow x=2.7=14\)

       \(\frac{y}{3}=2\Rightarrow y=2.3=6\)

10 tháng 12 2017

a, \(9x=4y\Rightarrow\frac{x}{4}=\frac{y}{9}=\frac{y-x}{9-4}=\frac{-25}{5}=-5\)

\(\Rightarrow\hept{\begin{cases}x=-5\times4=-20\\y=-5\times9=-45\end{cases}}\)

b,\(\frac{x}{2}=\frac{y}{5}=\frac{3x}{6}=\frac{2y}{10}=\frac{3x-2y}{6-10}=\frac{20}{-4}=-5\)

\(\Rightarrow\hept{\begin{cases}x=-5\times2=-10\\y=-5\times5=-25\end{cases}}\)

c,\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}=\frac{x^2-y^2}{9-25}=\frac{-64}{-16}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=9\times4=36\\y^2=25\times4=100\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm10\end{cases}}\)

Ta thấy \(\frac{x}{3}=\frac{y}{5}\)nên x,y cùng dấu 

Vậy ....................................................

d, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\);\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{15}=\frac{z}{18}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{18}\)từ đó bạn tự giải nha