Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2101+2102+2103
=23(298+299+2100)
=>(2101+2102+2103) chia hết cho (298+299+2100)
Ta có : 2^101+2^102+2^103=2^98x2^3+2^99x2^3+2^100x2^3=(2^98+2^99+2^100)x2^3 chia hết cho 2^98+2^99+2^100.
a: \(a=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{101}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{101}\right)⋮3\)
b: \(a=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{100}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{100}\right)⋮7\)
Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi nhóm có 3 số liên tiếp nhau.
Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)
\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)
\(=2+2.7+2^5.7+.....+2^{98}.7\)
\(\Rightarrow\)Tổng này chia 7 dư 2
bài 1
abcabc=abc.1001
có 1001chia hết cho 7
=>abc.1001 chia hết cho 7
còn chia hết cho 11 và 13 thì tương tự
bài 2
A=(2100+299+298)+...+(24+23+22)+21
A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21
A=298.(22+21+1)+...+22.(22+21+1)+21
A=298.7+...+22.7+21
A=(298+22).7 +21
có 7 chia hết co 7
=>(298+22).7 chia hết cho 7
=>Achia 7 dư 21
a) Ta có : C x 5 = 5^101 + 5^102 + ..... + 5^151
C x 5 = 5^151 - 5^100 + C
C = ( 5^151 - 5^100 ) : 4
b) Ta có : D x 6 = 6 + 6^2 + 6^3 + ..... + 6^21
D x 6 = 6^21 - 1 + C
D x 5 = 6^21 - 1
=) 5D + 1 = 6^21 - 1 + 1 = 6^21 chia hết cho 6
\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=30+...+2^{16}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{16}.30\)
\(A=30.\left(1+...+2^{16}\right)⋮5\)
B tương tự ( 57=3.19)
cm tổng đó chia hết cho 3 và 19 là đc =)
\(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}\)
\(=2^{100}.\left(1+2+2^2+2^3+2^4+2^5\right)=2^{100}.63\)
\(=2^{100}.9.7⋮7\)
Vậy \(A=2^{100}+2^{101}+2^{102}+2^{103}+2^{104}+2^{105}⋮7\)