\(d=lim\dfrac{1-\sqrt{4n^2+3}}{n+4}\). tổng 10 số hạng đầu của cấp số cộng có số đầu ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2021

\(\lim\dfrac{1-\sqrt{4n^2+3}}{n+4}=\lim\dfrac{\dfrac{1}{n}-\sqrt{4+\dfrac{3}{n^2}}}{1+\dfrac{4}{n}}=-2\)

\(\Rightarrow d=-2\)

\(\Rightarrow S_{10}=10.8+\dfrac{9.10}{2}.\left(-2\right)=-10\)

24 tháng 5 2017

Gọi số hạng đầu và công sai của cấp số cộng lần lượt là: u1d.
Ta có:
{u1+2u5=0S4=14{u1+2.(u1+4d)=0[2u1+3d].42=14{3u1+8d=02u1+3d=7{u1=8d=3.

24 tháng 5 2017

b) Gọi số hạng đầu và công sai của cấp số cộng làn lượt là \(u_1\) d. Ta có:
\(\left\{{}\begin{matrix}u_1+3d=10\\u_1+6d=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\).
c) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\).
d) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+6d-\left(u_1+2d\right)=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u^2_1+14u_1-51=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)
Vậy có hai cấp số cộng thỏa mãn là: \(\left\{{}\begin{matrix}d=2\\u_1=3\end{matrix}\right.\)\(\left\{{}\begin{matrix}d=2\\u_1=-17\end{matrix}\right.\).

9 tháng 4 2017

a) Từ hệ thức đã cho ta có:

hay

.Giải hệ này tìm u1 và d. Đáp số u1 = 16, d = -3.

b) Từ hệ đã cho ta có:

hay

Giải hệ này để tìm u1 và d. Đáp số u1 = 3 và d = 2 hoặc u1 = -17 và d = 2

u1 = 3 và d = 2 hoặc u1 = -17 và d = 2.

20 tháng 12 2019
https://i.imgur.com/WVXFRAn.jpg
9 tháng 4 2017

a) Ta có:

{5u1+10u=0S4=14{5u1+10u=0S4=14

⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3

Vậy số hạng đầu u1 = 8, công sai d = -3

b) Ta có:

{u7+u15=60u24+u212=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2){u7+u15=60u42+u122=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2)

(1) ⇔ 2u1 + 20d = 60 ⇔ u1 = 30 – 10d thế vào (2)

(2) ⇔[(30 – 10D) + 3d]2 + [(30 – 10d) + 11d]2 = 1170

⇔ (30 – 7d)2 + (30 + d)2 = 1170

⇔900 – 420d + 49d2 + 900 + 60d + d2 = 1170

⇔ 50d2 – 360d + 630 = 0

⇔[d=3⇒u1=0d=215⇒u1=−12⇔[d=3⇒u1=0d=215⇒u1=−12

Vậy

{u1=0d=3{u1=0d=3

hay

{u1=−12d=215



24 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.36, -5.2) A = (-4.36, -5.2) A = (-4.36, -5.2) B = (11, -5.2) B = (11, -5.2) B = (11, -5.2)

9 tháng 4 2017
a) Dãy số bị chặn dưới vì un = 2n2 -1 ≥ 1 với mọi n ε N* và không bị chặn trên vì với số M dương lớn bất kì, ta có 2n2 -1 > M <=> n > .
tức là luôn tồn tại n ≥ + 1 để 2 - 1 > M.
b) Dễ thấy un > 0 với mọi n ε N*
Mặt khác, vì n ≥ 1 nên n2 ≥ 1 và 2n ≥ 2.
Do đó n(n + 2) = n2 + 2n ≥ 3, suy ra .
Vậy dãy số bị chặn 0 < un với mọi n ε N*
c) Vì n ≥ 1 nên 2n2 - 1 > 0, suy ra > 0
Mặt khác n2 ≥ 1 nên 2n2 ≥ 2 hay 2n2 - 1≥ 1, suy ra ≤ 1.
Vậy 0 < un ≤ 1, với mọi n ε N* , tức dãy số bị chặn.
d) Ta có: sinn + cosn = √2sin(n + ), với mọi n. Do đó:
-√2 ≤ sinn + cosn ≤ √2 với mọi n ε N*
Vậy -√2 < un < √2, với mọi n ε N* .


Tham khảo:

undefined

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Công thức số hạng tổng quát của cấp số cộng un = – 5 + (n – 1).4 = 4n – 9.

26 tháng 12 2019
https://i.imgur.com/BzNqi00.jpg
26 tháng 12 2019
https://i.imgur.com/PHFvoJD.jpg