K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2019

 a) (Dễ :v)Trong 2 STNLT có 1 số chẵn, 1 số lẻ

  Mà số chẵn thì chia hết cho 2 => Cái cần chứng minh

14 tháng 7 2019

b) Có : ab = 10a + b

            ba = 10b + a       => ab + ba = 10a + 10b + a+b = (10a +a) + (10b+b)  = 11a + 11b = 11(a+b)

Vì a,b là các cs => a,b \(\in\)N => 11(a+b) \(⋮\)11 => ab + ba \(⋮\)11

15 tháng 8 2016

Bạn vào Wed:http://olm.vn/hoi-dap/question/374984.html

27 tháng 10 2016

ý đàu tiên:

ta có:    \(\overline{ba}-\overline{ab}\)=10b+a-10a-b=9b-9a=9(b-a) chia hết cho 9

27 tháng 10 2016

ý thứ 2 đề bài phải là trừ chứ bạn

nếu là trừ thì giải như sau:

\(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)chia hết cho 99

Ta có :

4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c 

= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21

( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )

=> 400a + 40b + 4c chia hết cho 21

=> 4 ( 100a + 10b + c ) chia hết cho 21

=> 100a + 10b + c chia hết cho 21

=> abc chia hết cho 21

Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21

 

de thui nhung mk 

phai đi hoc đây 

chuc bn hco gioi!

nhae$

s5.jpgKo có tên

27 tháng 10 2016

11 ban nhe

19 tháng 10 2015

Ta có
abcd = ab.100 + cd
        = ab.99 + ab + cd
        = ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11

a. aaa có dấu gạch trên đầu chia hết cho 37

Ta có aaa=a.37

          aaa= a.3.37 chia hết cho 37

Hk tốt