Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta gọi T = (1^2+2^2+...+2005^2)-(1.3+2.4+3.5+...+2004.2006)
Đặt A = 1^2+2^2+3^2+...+2005^2
=> A = 1.1 + 2.2 +3.3 +...+ 2005.2005
=> A = 1.(2-1) + 2.(3-1) + 3.(4-1) +...+ 2005.(2006-1)
==> A = 1.2-1.1 + 2.3-1.2 + 3.4-1.3+...+2005.2006-1.2005
=> A = (1.2+2.3+3.4+...+2005.2006)-(1+2+3+...+2005)
Xét 1.2 +2.3+3.4+...+2005.2006
= 1/3.(1.2.3+2.3.3+...+2005.2006.3)
=1/3.[1.2.(3-0)+2.3.(4-1)+...+2005.2006.(2007-2004)]
=1/3.(1.2.3+2.3.4-1.2.3+...+2005.2006.2007-2004.2005.2006)
= 1/3 . 2005.2006.2007
= 2005.2006.2007/3 = 2690738070
Vậy A= 2690738070 - (1+3+5+...+2005)
=> A= 2690738070- [(2005-1):2+1].(2005+1)/2
=> A = 2690738070 - 1006009
=> A = 2689732061
Đắt B = 1.3+2.4+3.5+4.6+...+2003.2005 +2004.2006
=> B= (1.3+3.5+...+2003.2005)+(2.4+4.6+...+2004.2006)
=> 6B = (1.3.6+3.5.6+...+2003.2005.6)+(2.4.6+4.6.6+...+2004.2006.6)
=> 6B = [1.3.(5+1)+3.5.(7-1)+...+2003.2005.(2007-2001)] + [2.4.(6-0)+4.6.(8-2)+...+2004.2006.(2008-2002)]
=> 6B = (1.3.5+1.3.1+3.5.7-1.3.5+...+2003.2005.2007-2001.2003.2005)+(2.4.6+4.6.8-2.4.6+...+2004.2006.2008-2002.2004.2006)
=> 6B = 1.3.1+2003.2005.2007 + 2004.2006.2008
=> 6B = 16132350300
=> B = 16132350300/6 = 2688725050
Vì T = A - B = 2689732061-2688725050
=> T = 1007011
Cứu tôi vs , tôi sắp chết nếu như ko ai giải cho tôi câu này
Gọi A là biểu thức ta có:
CÂU1 :A = 1.2+2.3+3.4+......+99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
3A = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Lời giải:
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-998}{999}.\frac{-999}{1000}\\
=\frac{(-1)(-2)(-3)...(-998)(-999)}{2.3.4....1000}\\
=-\frac{1.2.3.4....998.999}{2.3.4...1000}\\
=-\frac{1}{1000}\)
Trong $B$ có một thừa số là $1-\frac{7}{7}=0$ nên $B=0$ (do số nào nhân với $0$ cũng sẽ bằng $0$.
----------------------
$C=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50^2}$
$=\frac{1.3.2.4.3.5.....49.51}{2^2.3^2.4^2....50^2}$
$=\frac{(1.2.3...49)(3.4.5...51)}{(2.3.4...50)(2.3.4...50)}$
$=\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4....50}$
$=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}$
\(\frac{22}{1\cdot3}\cdot\frac{32}{2\cdot4}\cdot\frac{42}{3\cdot5}\cdot...\cdot\frac{992}{98\cdot100}\)
Mk vt lại đề nè bn xem có đúng ko
Tính: 22 phần 1.3 . 32 phần 2.4 . 42 phần 3.5 ...... 992 phần 98.100 = 22 phần 1.3 . 32 phần 2.4 . 42 phần 3.5 ...... 992 phần 98.100