K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

\(D=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\)

\(2D=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right)\)

\(2D=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\)

\(2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right)\)\(D=1-\dfrac{1}{2^{1000}}\)

15 tháng 8 2017

\(D=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}.\)

\(2D=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right).\)

\(2D=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}.\)

\(2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right).\)

\(D=1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^2}\right)+...+\left(\dfrac{1}{2^{999}}-\dfrac{1}{2^{999}}\right)-\dfrac{1}{2^{1000}.}\)

\(D=1+0+0+...+0-\dfrac{1}{2^{1000}}.\)

\(D=1-\dfrac{1}{2^{1000}}.\)

Vậy.....

26 tháng 6 2017

\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{3^2}+.....+\dfrac{1000}{2^{1000}}\)

\(2B=2\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{3^3}+.....+\dfrac{1000}{2^{1000}}\right)\)

\(2B=1+1+\dfrac{3}{2^2}+......+\dfrac{1000}{2^{999}}\)

\(2B-B=\left(2+\dfrac{3}{2^2}+.....+\dfrac{1000}{2^{999}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.....+\dfrac{1000}{2^{999}}\right)\)\(2B-B=2-\dfrac{1}{2}-\dfrac{2}{2^2}-\dfrac{1000}{2^{999}}\)

\(B=1-\dfrac{1000}{2^{999}}\)

5 tháng 4 2017

\(\dfrac{1}{1}.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{999}.\dfrac{1}{1000}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\\ =1-\dfrac{1}{1000}=\dfrac{999}{1000}\)

5 tháng 4 2017

ta có

1/1.1/2=1-1/2

1/2.1/3=1/2-1/3

1/3.1/4=1/3-1/4

............

1/999.1/1000=1/999-1/1000

Từ đó suy ra

1/1.1/2+1/2-1/3+1/3+.......+1/998.1/999+1/999.1/1000

=1/1-1/2+1/2-1/3+1/3-.....+1/998-1/999+1/999-1/1000

=1-1/1000

=1000/1000-1/1000

=999/1000

nhớ like bạn nhéhihi

20 tháng 9 2017

Violympic ko có chứng tỏ.

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

7 tháng 7 2017

Các câu dễ tự làm nha:

\(D=\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(D=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{2}+\dfrac{1}{3}-1+\dfrac{1}{2}\)\(D=-\dfrac{1}{100}-1\)

11 tháng 4 2017

\(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^4-2^6.3^3}=\dfrac{2^3.3^3.\left(2+3\right)}{2^5.3^3.\left(3-2\right)}=\dfrac{2^3.3^3.5}{2^5.3^3.1}\)

\(=\dfrac{5}{2^2}=\dfrac{5}{4}\)

17 tháng 8 2018

\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)

\(D=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{-3}{35}\right)+\dfrac{1}{41}\)

\(D=1+-1+\dfrac{1}{41}\)

\(D=0+\dfrac{1}{41}\)

\(D=\dfrac{1}{41}\)

\(C=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}+\dfrac{-1}{36}+\dfrac{-2}{9}\right)+\dfrac{1}{57}\)

\(=\dfrac{5+9+1}{15}+\dfrac{-27-1-8}{36}+\dfrac{1}{57}\)

=1/57

\(E=\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{4}{35}+\dfrac{2}{7}\right)+\dfrac{1}{127}=\dfrac{1}{127}\)

a: 51/56=1-5/56

61/66=1-5/66

mà -5/56<-5/66

nên 51/56<61/66

b: 41/43<1<172/165

c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)