Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề nha :
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2015\cdot2017}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2016}{2017}=\frac{1008}{2017}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2016.2017}\)
\(=\frac{1}{2}\left[\left[\frac{1}{1}-\frac{1}{3}\right]+\left[\frac{1}{3}-\frac{1}{5}\right]+...+\left[\frac{1}{2016}-\frac{1}{2017}\right]\right]\)
= \(=\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\right]\)
\(=\frac{1}{2}.\left[1-\frac{1}{2017}\right]\)
= 1/2. 2016 / 2017 = 1008/2017
AI THẤY ĐÚNG ỦNG HỘ NHA
tham khảo ở đây Bài 1360. A=1/2+1/3+1/4+...+1/15+1/16.Chứng tỏ rằng A không phải làsố tự nhiên. - GIÁO DỤC TIỂU HỌC - Blog Nguyễn Xuân Trường
Ta có: \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1\); (1)
\(\frac{1}{8}\times4< \frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}< \frac{1}{4}\times4\)
\(\frac{1}{2}< \frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}< 1\); (2)
\(\frac{1}{16}\times8< \frac{1}{9}+\frac{1}{10}+\frac{1}{11}+....+\frac{1}{16}< \frac{1}{8}\times8\)
\(\frac{1}{2}< \frac{1}{9}+\frac{1}{10}+\frac{1}{11}+....\frac{1}{16}< 1\) (3)
Từ vế (1), (2) và (3) ta có:
\(1+\frac{1}{2}+\frac{1}{2}< A< 1+1+1\)
\(2< A< 3\)
Vậy A không phải là số tự nhiên.
a) Gọi d là ƯCLN(n, n + 1), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n,n+1\right)=1\)
\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.
b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.
c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)
\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.
d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)
\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.