\(x^4+5x^3-x^2+x-0,5\)

N(x) =

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

a) \(M\left(x\right)+N\left(x\right)=\left(x^4+5x^3-x^2+x-0,5\right)+\left(3x^4-5x^2-x-2,5\right)\)

\(=\left(x^4+3x^4\right)+5x^3-\left(x^2+5x^2\right)+\left(x-x\right)-\left(0,5+2,5\right)\)

\(=4x^4+5x^3-6x^2-3\)

b) \(M\left(x\right)-N\left(x\right)=\left(x^4+5x^3-x^2+x-0,5\right)-\left(3x^4-5x^2-x-2,5\right)\)

\(=x^4+5x^3-x^2+x-0,5-3x^4+5x^2+x+2,5\)

\(=\left(x^4-3x^4\right)+5x^3-\left(x^2-5x^2\right)+\left(x+x\right)-\left(0,5-2,5\right)\)

\(=-2x^4+5x^3+4x^2+2x+2\)

16 tháng 3 2017

a) \(4x^4+5x^3-6x^2-3\)

b) \(-2x^4+5x^3-6x^2-3\)

28 tháng 4 2017

Chắc cậu giải được câu a) rồi nhỉ ?

Mình giải câu b) nha.

P(x)=-Q(x)\(\Rightarrow\)3x3+x2-3x+7=3x3+x2+x+15

-3x+7= x+15

-4x =8

x =-2

Vậy x=-2 để P(x)=-Q(x)

Chúc bạn học tốtbanh.

28 tháng 4 2017

Ukm

7 tháng 4 2017

Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0

[y-4] \(\ge\) 0

Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1

Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0

Tự tính ra

7 tháng 4 2017

Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé

Xin lỗi nhiều tại mình o tìm được kí hiệu đó

27 tháng 10 2017

\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)

27 tháng 10 2017

a. x2113=31

=> x2=144

=> x2=\(\sqrt{144}\)

=> x=\(\pm12\)

c.x4=256

=> x4=44

=> x=\(\pm4\)

2 tháng 11 2017

\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)

\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\ne0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ..

2 tháng 11 2017

\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)

=> \(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}\)= 0

(x + 1).(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\)) = 0

Ta thấy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\) > 0

=> x + 1 = 0

x = 0 - 1

x = -1

28 tháng 7 2017

1. a) (x-2)2 =1

=> x - 2 = \(\pm\sqrt{1}\)

=> x - 2 = 1 hoặc -1

=> x = 3 hoặc 1

b) 2x - 1= -8

=> 2x = -7

=>x = \(\dfrac{-7}{2}\)

c)thiếu đề

d) (x-1)x+2 = (x-1)x+4

(x-1)x+2 = (x-1)x+2+2

(x-1)x+2 = (x-1)x+2. (x-1)2

(x-1)x+2 - (x-1)x+2. (x-1)2 = 0

=> (x-1)x+2. [1 - (x-1)2] = 0

\(\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2a) \(\dfrac{45^{10}.5^{10}}{75^{10}}\) = \(\dfrac{\left(3.3.5\right)^{10}.5^{10}}{\left(5.5.3\right)^{10}}\) = \(\dfrac{3^{10}.3^{10}.5^{10}.5^{10}}{5^{10}.5^{10}.3^{10}}\) = \(3^{10}\)

b) \(\dfrac{2^{15}.9^4}{6^6.8^3}\)=\(\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)=\(\dfrac{2^{15}.3^8}{2^6.3^6.2^9}\)=\(3^2\)

28 tháng 7 2017

c)\(\left(x-\dfrac{2}{9}^3\right)=\left(\dfrac{2}{3}\right)^6\)thank nhé

2 tháng 11 2017

1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho

2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)

\(\dfrac{x}{3}=4\Rightarrow x=12\)

\(\dfrac{y}{5}=4\Rightarrow y=20\)

Vậy x=12 và y=20

20 tháng 2 2017

2.Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\)

\(\Rightarrow c=0\)

Vậy c=0

20 tháng 2 2017

BT5: Ta có: f(1)=1.a+b=1 =>a+b=1 (1)

f(2)=2a+b=4 (2)

Trừ (1) cho (2) ta có: 2a+b-a-b=4-1 => a=3

Với a=3 thay vào (1) ta có: 3+b=1 => b=-2

Vậy a=3, b=-2

14 tháng 3 2017

mình ra từ hồi chiều nhưng bây giờ mới rảnh để chỉ cho bạn, xin lỗi nhé

x - y = 2

<=> y = x - 2

\(A=xy+4\\ =x\left(x-2\right)+4\\ =x^2-2x+4\\ =\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\forall\)

=> (x-1)2 + 3 \(\ge3\)

=> (x-1)2 + 3 min = 3

=> A min = 3 (??, mình làm min đựoc thôi, còn max thì chịu)

bài kia cũng thế, thay y = x-2 vào rồi tính ra ???

Bn "Lưu Hiền" có thể nói cho mình biết tại sao lại :

x\(^2\)- 2x+4

=> ( x - 1)\(^2\)+3

Mình ko hiểu lắm.hum

11 tháng 6 2017

F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|

Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:

F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50

=> F\(\ge\)50 => \(Min_F=50\)

P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?

11 tháng 6 2017

\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)

\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)

\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)

(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))

Với mọi giá trị của \(x\in R\) ta có:

\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)

\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)

\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............

\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)

Dấu "=" sảy ra khi:

\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)

Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)

Mình cũng không chắc đâu! Chúc bạn học tốt!!!