Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$(a+b)(a-b)=975602$ chẵn nên trong 2 số $a+b, a-b$ chắc chẵn tồn tại 1 số chẵn.
Giả sử đó là $a+b$. Ta có: $a-b=(a+b)-2b$ có $a+b$ chẵn, $2b$ chẵn nên $a-b$ chẵn.
$\Rightarrow (a+b)(a-b)\vdots 4$
Mà $975602\not\vdots 4$
Do đó vô lý. Tức là không tồn tại số tự nhiên $a,b$ thỏa mãn đề.
Ta có :n2 + 2 + 2 = n . ( n+1 ) + 2
Mà n.(n + 1 ) là 2 stn liên tiếp nhân với nhau
Suy ra : n.( n + 1 ) chỉ có cs tận cùng là : 0;2;6
Do đó : n .( n +1 ) + 2 có cs tận cùng : 2;4;8 ( Không chia hết cho 5 vì không có cs tận cùng là 0;5 )
Vậy không tồn tại stn n nào để n2 + n + 2 chia hết cho 5
-->5(3a+10b)=2014
mà 5(3a+10b) chia hết cho 5 nên 2014 phải chia hết cho 5(vô lý)
-->ko tồn tại
Ta thấy: 15a+50b=2014
=> 5.(3a+10b)=2014
Vì 5.(3a+10b) chia hết cho 5
=>2014 chia hết cho 5
mà 2014 không chia hết cho 5
=>vô lí.
Vậy không tồn tại a,b thoả mãn đề bài.
Ta có : \(3a+24b=3a+3.8b=3\left(a+8b\right)⋮3\)
mà 633326 chia 3 dư 2
\(\Rightarrow\)Vô lí
Vậy không tồn tại các số tự nhiên a,b thỏa mãn đề bài.