K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2019

Áp dụng công thức biến tích thành tổng:

\(cos\left(a+b\right).cos\left(a-b\right)=\dfrac{1}{2}\left(cos2a+cos2b\right)\)

\(=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)=\dfrac{1}{2}\left(2cos^2a-2sin^2b\right)\)

\(=cos^2a-sin^2b\)

\(cos\left(\dfrac{\pi}{4}+a\right).cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos\dfrac{\pi}{2}+cos2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos2a+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos^2a-sin^2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos^2a\)

NV
29 tháng 9 2020

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

28 tháng 9 2020

mọi người giúp hộ mình nhanh với

NV
17 tháng 6 2020

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

NV
17 tháng 6 2020

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0
NV
19 tháng 2 2020

\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)

\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)

\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)

\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)

\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)

Chọn đáp án đúng: Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây? A. D(3;1) B. A(1;2) C. C\(\left(1;\frac{1}{2}\right)\) D. B(2;1) Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây? A. n(m-1)2-m(n-1)2≥0 B. (m-n)2 ≥2mn C. (m+n)2 +m-n≥0 D. m2+n2≥2mn Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có: A. giá trị nhỏ nhất của m là 4 B....
Đọc tiếp

Chọn đáp án đúng:

Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây?

A. D(3;1)

B. A(1;2)

C. C\(\left(1;\frac{1}{2}\right)\)

D. B(2;1)

Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây?

A. n(m-1)2-m(n-1)2≥0

B. (m-n)2 ≥2mn

C. (m+n)2 +m-n≥0

D. m2+n2≥2mn

Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có:

A. giá trị nhỏ nhất của m là 4

B. giá trị lớn nhất của m là 4

C. giá trị lớn nhất của m là 2

D. giá trị nhỏ nhất của m là 2

Câu 4: Bpt 5x-1>\(\frac{2x}{5}+3\) có nghiệm là:

A. ∀x

B. x>\(\frac{20}{23}\)

C. x<2

D. x>-\(\frac{5}{2}\)

Câu 5: Cho nhị thức bậc nhất f(x)=23x-20. Khẳng định nào sau đây đúng?

A. f(x)>0, ∀x∈\(\left(-\infty;\frac{20}{23}\right)\)

B. f(x)>0, ∀x∈⛇

C. f(x)>0, ∀x∈\(\left(\frac{20}{23};+\infty\right)\)

D. f(x)>0, ∀x>-\(\frac{5}{2}\)

Câu 6: Điểm nào sau đây thuộc miền nghiệm của hệ bpt \(\left\{{}\begin{matrix}2x-5-1>0\\2x+y+5>0\\x+y+1< 0\end{matrix}\right.\) A. (0;-2) B. (0,0) C. (0;2) D.(1;0) Câu 7: Miền nghiệm của bất phương trình 3x+2(y+3)>4(x+1)-y+3 là phần mặt phẳng chứa điểm nào? A. (3;1) B. (0;0) C. (3;0) D. (1;1) Câu 8: Cho hệ bpt \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1\le0\end{matrix}\right.\) có tập nghiệm là S. Khẳng định nào sau đây là khẳng định đúng? A. (-4;\(\sqrt{3}\))∈S B. (1;-1) ∈S C. (-1;\(\sqrt{5}\))∈S D. (1;-\(\sqrt{3}\))∈S Câu 9: Suy luận nào sau đây đúng? A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\frac{a}{b}>\frac{b}{d}\) B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow a-c>b-d\) C. \(\left\{{}\begin{matrix}a>b>0\\c>d>0\end{matrix}\right.\Rightarrow ac>bd\) D. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\) Câu 10: Cho hệ bất phương trình \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1>0\end{matrix}\right.\)có tập nghiệm là S. Khẳng định nào sau đây đúng? A. \(\left(\sqrt{2};0\right)\notin S\) B. (-1;2) ∉ S C. \(\left(\sqrt{3};0\right)\)∈S D. \(\left(1;-\sqrt{3}\right)\in S\)

1
NV
5 tháng 5 2020

Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)

Câu 2: đáp án D

\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)

Câu 3: đáp án D

\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)

Câu 4:

\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)

Câu 5:

\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C

Câu 6:

Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề

Câu 7:

\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)

\(\Leftrightarrow x-3y+1< 0\)

Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng

Câu 8:

Thay tọa độ vào chỉ đáp án D thỏa mãn

Câu 9:

Đáp án C đúng

Câu 10:

Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)