Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(Z_L=\omega L = 250\Omega\)
\(\cos \varphi = \dfrac{R+r}{Z}\Rightarrow Z = \dfrac{100+100}{0,8}=250\Omega\)
\(Z=\sqrt{(R+r)^2+(Z_L-Z_C)^2}\)
\(\Rightarrow 250=\sqrt{(100+100)^2+(250-Z_C)^2}\)
Do u sớm pha hơn i nên suy ra \(Z_C=100\Omega\)
\(\Rightarrow C = \dfrac{10^-4}{\pi}(F)\)
Chọn B
2. Công suất tiêu thụ cực đại khi mạch cộng hưởng
\(\Rightarrow Z_{Cb}=Z_L=250\Omega\)
Mà \(Z_C=100\Omega <250\Omega\)
Suy ra cần ghép nối tiếp C1 với C và \(Z_{C1}=Z_{Cb}-Z_C=250=100=150\Omega\)
\(\Rightarrow C_1 = \dfrac{2.10^-4}{3\pi}(F)\)
Chọn D.
Độ giãn của lò xo tại VTCB: \(\Delta l_0=\frac{9}{\omega^2}=2cm\)
Lực đàn hồi có độ lớn 1,5 N
\(F=k.\left(\Delta l\pm x\right)\Leftrightarrow1,5=50.\left(0,02\pm x\right)\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1cm\\x=-1cm\end{array}\right.\)
Khoảng thời gian ngắn nhất vật đi qua hai vị trí mà lực đàn hồi F = 1,5 N là :
\(t=\frac{T}{12}+\frac{T}{12}=\frac{\pi}{30\sqrt{5}}=s\)
Đáp án C
Giải:
\(A=\sqrt{x^2+\left(\dfrac{\upsilon}{\omega}\right)^2}=5\left(cm\right)\)
\(t=0\Rightarrow\left\{{}\begin{matrix}x=5\cos\left(\varphi\right)=0\\\upsilon=-\omega.A\sin\left(\varphi\right)< 0\end{matrix}\right.\) \(\Rightarrow\varphi=\dfrac{\pi}{2}\)
Vậy ta chọn \(C.5\cos\left(10t+\dfrac{\pi}{2}\right)cm\)
Câu 12. Một vật dao động điều hòa khi vật đi qua vị trí x = 3 cm vật đạt vận tốc 40 cm/s, biết rằng tần số góc của dao động là 10 rad/s. Viết phương trình dao động của vật? Biết gốc thời gian là lúc vật đi qua vị trí cân bằng theo chiều âm, gốc tọa độ tại vị trí cân bằng.
A. 3cos(10t + π/2) cm
B. 5cos(10t - π/2) cm
C. 5cos(10t + π/2) cm
D. 3cos(10t + π/2) cm
Tần số góc: \(\omega=\sqrt{\frac{K}{m}}=10\pi\left(rad\text{/}s\right)\)
Biên độ dao động của vật \(A=\sqrt{x^2+\left(\frac{v}{w}\right)^2}=6\left(cm\right)\)
Lò xo có độ nén cực đại tại biên âm:
\(\Rightarrow\) Góc quét \(=\pi\text{/}3+\pi=\omega t\Rightarrow t=2\text{/}15\left(s\right)\)
chọn B
Để biên độ đạt giá trị cực đại thì hiện tượng cộng hưởng xảy ra, tần số ngoại lực bằng tần số dao động riêng của hệ.
Suy ra \(\omega=\omega_0=\sqrt{\dfrac{k}{m}}=5\pi(rad/s)\)
một chất điểm có khối lượng m=100g thực hiện dao động điều hòa . khi chất điểm ở cách vị trí cân bằng 4cm thì tốc độ của vật là 0.5m/s và lực kéo về tác dụng lên vật là 0.25N.biên độ dao động của chất điểm là
lm ntn hả b đáp án là 2can14 nhưng mk tính ra kq khác