K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Đáp án C.

Sắp xếp bộ ba số 1, 2, 3 sao cho 2 đứng giữa 1, 3 có 2 cách.

Số số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3 kể cả trường hợp số 0 đứng đầu là 2. C 7 4 .5 !  số.

Số số tự nhiên có 7 chữ số khác nhau từng đôi một, trong đó chữ số 2 đứng liền giữa hai chữ số 1 và 3, có số 0 đứng đầu là 2. C 6 3 .4 !  số.

Suy ra số số tự nhiên thỏa yêu cầu bài toán là 2. C 7 4 .5 ! − 2. C 6 3 .4 ! = 7440  (số)

2 tháng 8 2021

Một số tự nhiên ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ có 5 chữ số chia hết cho 3 khi tổng các chữ số của nó chia hết cho 3.
Nhận thấy một số tự nhiên thoả yêu cầu  sẽ không đồng thời có mặt các chữ số 0 và 3.

Do đó ta chia làm 2 trường  hợp:
TH1: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯  không có chữ số 0.
Khi đó 5 chữ số còn lại có tổng của chúng chia hết cho 3, nên số số tự nhiên thoả mãn là 5! số.
TH2: ¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeabcde¯ không có chữ số 3 (khi đó ta còn 5 chữ số là 0; 1; 2; 4; 5 có tổng của chúng chia hết cho 3).
Suy ra trường hợp này ta có 4.4!4.4! số.
Vậy theo quy tắc cộng ta có tất cả 5!+4.4!=2165!+4.4!=216 số .

8 tháng 8 2020

2mx nha bạn

NV
8 tháng 8 2020

1.

Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)

Khi đó:

\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng

Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)

Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)

2.

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ

\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận

Vậy ĐTHS có 2 tiệm cận

3.

Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m=\left\{5;-5\right\}\)

Đề bài sai hoặc đáp án sai

a

=>(n+2)=5 :.n+2

=>5:. n+2

=>n+2 E (1,5)

th1

N+2=1

th2 tựlamf

20 tháng 10 2019

x không có giá trị đúng bởi vì trong bài ghi n ko phải x 

Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\) Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng: a) 0 b) 1 c) 2 d) -1 Câu 2: Cho cấp số cộng...
Đọc tiếp

Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\)
Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng:

a) 0

b) 1

c) 2

d) -1

Câu 2: Cho cấp số cộng có \(u_1=2\)\(u_7=23\) .

a) Xác định công thức tổng quát của cấp số cộng trên

b) Tính \(S=u_1+\left(u_2+u_4+u_6+...+u_{20}\right)\)

c) Cho \(u_5+u_6+...+u_{12}=u_{24}+u_{26}+...+u_{40}-m\)Tìm giá trị \(m\) theo các số hạng của cấp số cộng trên.
Câu 3: Một số điện thoại của công ty A có dạng \(1900abcxyz\). Hỏi xác suất là bao nhiêu để thoả mãn các trường hợp sau:

TH1: số \(a,b,c\) lập thành một cấp số cộng với công sai là 4 và chia hết cho 3 và thoả mãn tổng ba số \(x,y,z\) lớn hơn tổng \(a,b,c\) 2 đơn vị và chia hết 2.

TH2: Các chữ số thoả mãn \(x+a=y+b=z+c\)
TH3: Các chữ số thoả mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và đôi một khác nhau

TH4: Các chữ số thoả mản \(x.y.z=a.b.c\) và đôi một khác nhau

0