K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

a. Xét tam giác ABC có:

AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)

BC2 = 152 = 225 (cm)

Suy ra: AC2 + AB2 = BC2

=> Tam giác ABC vuông tại A

b.

Ta có AD là phân giác của góc B

=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)

\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)

\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)

Vậy: DA = 4,5 (cm) và DC = 7,5(cm)

20 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABD\)\(ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABD\sim ACE\left(g-g\right).\)

Chúc bạn học tốt!

1 tháng 5 2016

câu 1

ta có BD là phân giác tam giác ABC

suy ra AB phần BC bằng AD phần DC bằng 3 phần 2 mà AD cộng DC bằng 6

suy ra AD bằng 6 nhân 3 chia 5 bằng 18 phần 5

xét tam giác ABD và tam giác ACE có

góc A chung

góc ABD bằng góc ACE

vậy tam giác ABD đồng dạng tam giác ACE (g-g)

suy ra AB phần AD bằng AC phần AE

mà góc A chung

vậy tam giác AED đồng dạng tam giác ACB(c-g-c)

suy ra AD phần ED bằng AB phần BC

thế số vào ta được ED bằng 12 phần 5

câu 2 lỡ chứng minh trên rùi

câu 3xét tam giác BEI và tam giác CDI có

góc EBI bằng góc DCI

góc EIB bằng góc DIC ( đối đỉnh )

vậy tam giác BEI đồng dạng tam giác CDI (g-g)

suy ra BE phần IE bằng CD phần ID

tương đương IE nhân CD bằng ID nhân BE

câu cuối

ta có tam giác AED phần tam giác ABC bằng k bình phương

Tam giác AED phần tam giác ABC bằng AD phần AB tất cả bình phương

tương đương AD bình chia cho AB bình băng 9 phần 25 tức là AD chiếm 9 phần AB chiếm 25 phần

ta lấy 6 nhân 9 chia 25 bằng 54 phần 25

24 tháng 3 2016

mình cũng z

30 tháng 1 2022

Answer:

A C B D E

a. Tam giác ABC cân tại A

=> Góc ABC = góc ACB

=> BD là tia phân giác của góc ABC

\(\Rightarrow\widehat{BDC}=\frac{\widehat{ABC}}{2}\)

CE là tia phân giác của góc ACB

\(\Rightarrow\widehat{BCE}=\frac{\widehat{ACB}}{2}\)

=> Góc BDC = góc BCE

Xét tam giác BCE và tam giác CBD:

BC cạnh chung

Góc CBE = góc BCD

Góc BCE = góc CBD

=> Tam giác BCE = tam giác CBD (g.c.g)

=> BD = CE

b. Có: \(\frac{BE}{AB}=\frac{DC}{AC}\Rightarrow ED//BC\)

c. Có: \(\frac{AD}{DC}=\frac{AB}{BC}\)

\(\Rightarrow\frac{AD}{DC}=\frac{6}{4}=\frac{3}{2}\)

\(\Rightarrow AD=\frac{3}{2}DC\)

Mà AD + DC = AC

      \(\frac{3}{2}DC+DC=6\)

\(\Rightarrow DC=2,4cm\)

\(\Rightarrow AD=3,6cm\)

Có \(\frac{ED}{BC}=\frac{AD}{AC}\)

\(\Rightarrow ED=\frac{BC.AD}{AC}=\frac{4.3,6}{6}=2,4cm\)

8 tháng 5 2018

a)Xét \(\Delta ABC\)\(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{BHA}\)(=\(90^0\))

\(\widehat{B}\)chung

=>\(\Delta ABC\)~\(\Delta HBA\)(g.g)

=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=>\(AB^2=HB.BC\) A B C H D