K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

Làm gì có ở câu hỏi tương tự 

19 tháng 12 2015

??? tớchỉ mới học lớp 6 thoi nên ko hiểu

20 tháng 12 2014

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm


 

Thay 1= 4(ab+bc+ca), Ta có: 

\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)

\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)

\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)

\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Mà a, b, c là số hữu tỉ 

\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ 

\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ

19 tháng 12 2021

a3b+ab3+2a2b2+2a+2b+1=0

<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

 <=>(a+b+1)2=-ab(a+b)2-(a+b)2

<=>(a+b+1)2=(a+b)2(1-ab)

=> 2 TH:

*a+b=0=(1-ab).0=0 (loại)

*a+b khác 0

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ (đpcm)

Cre: mạng