Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- xét x>=2 suy ra A= x-1 + x-2 = 2x - 3 >= 1 (do x>=2)
- x=< 1 suy ra A = -x + 1 - x +2= -2x + 3 >=1 ( do x =<1)
- xét 1=<x<= 2 suy ra A = x- 1 -x + 2 = 1
vậy giá trị nhở nhất của A =1 khi 1=<x<=2
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
đặt A = |x + 1| + |x + 3|
ta có A = |x + 1| + |x + 3| = |x + 1| + |-x - 3| > |x + 1 -x - 3| = 2
=> Amin = 2 <=> (x+1)(-x-3) > 0
vậy Amin= 2 <=> -3< x <-1
\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)
Vậy,..........
B = 5|1 - 4x| - 1
Ta có: 5|1 - 4x| \(\ge\)0\(\forall\)x
=> 5|1 - 4x| - 1 \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 1 - 4x = 0 <=> x = 1/4
vậy MinB = -1 tại x = 1/4
E = 5 - |2x - 1|
Ta có: |2x - 1| \(\ge\)0 \(\forall\)x
=> 5 - |2x - 1| \(\le\)5 \(\forall\)x
Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2
Vậy MaxE = 5 tại x = 1/2
P = \(\frac{1}{\left|x-2\right|+3}\)
Ta có: |x - 2| \(\ge\)0 \(\forall\)x
=> |x - 2| + 3 \(\ge\)3 \(\forall\)x
=> \(\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxP = 1/3 tại x = 2
Tìm giá trị nhỏ nhất :
A = 3x2 - x + 1
GTNN cuả A là \(\frac{1}{6}\)
B = 9x2 - x + 3
GTNN cuả A là \(\frac{1}{18}\)
Study well
\(A=3\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{1}{4}\)
\(=3\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Vậy \(Min_A=\frac{1}{4}\) khi và chỉ khi x=1/2
\(B=9\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right)+\frac{3}{4}\)
=\(9\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vay \(Min_B=\frac{3}{4}\)khi và chỉ khi x=3/4
\(A=3x^2-x+1\)
\(\Leftrightarrow A=3x^2-x+\frac{1}{12}+\frac{11}{12}\)
\(\Leftrightarrow A=\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\)
Vì \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}\ge0\)nên \(\frac{\left(\frac{1}{2}-\frac{x}{2}\right)x^2}{2}+\frac{11}{12}\ge\frac{11}{12}\)
Vậy \(A_{min}=\frac{11}{12}\Leftrightarrow x=0\)
\(\frac{56-34}{a-b+c}\)