\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2016}}< 2016\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2006}}\)

\(\Rightarrow A< 1+1+1+...+1\)

\(\Rightarrow A< 2016\)

4 tháng 4 2017

B=1/3+1/32+...+1/32017  <1/2

3B=1+1/3+1/32+...1/32016    <1/2

3B-B=(1+1/3+...+1/32016) - (1/3+1/32+...+1/32017)

2B=1-(1/32017)

2B=(32017-1) phần (32017)=>B=(32017-1):2 phần (32017)

Vậy ..........................

7 tháng 12 2016

trả lời chi tiết không k ko làm nữa

7 tháng 12 2016

 không giữ lời hứa không làm nữa

17 tháng 1 2017

<\(\frac{1}{4}\)

k mk nhé

17 tháng 1 2017

 \(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2016^3}\)

=\(\frac{1}{2x2x2}+\frac{1}{3x3x3}+\frac{1}{4x4x4}+...+\frac{1}{2016x2016x2016}\)

Ta có:\(\frac{1}{2x2x2}< \frac{1}{1x2x3}\)

........................................................(Tương tự)

Tự làm