\(1+\cos2\alpha=2\cos^2\alpha\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Ta có hình vẽ, với \(\Delta\)ABC vuông ở A; đường cao AH; trung tuyến AM và \(\alpha=\widehat{ACB}\):

A B C H M

\(\Delta\)ABC vuông tại A có đường trung tuyến AM nên \(\Delta\)ACM cân ở M => ^AMB = 2.^ACM = 2.^ACB = 2\(\alpha\)

Ta có: \(\cos2\alpha=\frac{HM}{AM}=\frac{HM}{CM}\Rightarrow1+\cos2\alpha=\frac{HM+CM}{CM}=\frac{CH}{CM}\)

\(\Rightarrow1+\cos2\alpha=2.\frac{CH}{BC}=2.\frac{CH}{AC}.\frac{AC}{BC}=2.\cos\alpha.\cos\alpha=2\cos^2\alpha\)(ĐPCM).

18 tháng 7 2018

a)
^MAC = ^MCA = a ---> ^AMH = ^MAC + ^MCA = 2a
sin2a = sinAMH = AH/MA = 2AH/BC = 2(AH/AC).(AC/BC) = 2 sina.cosa

b)
1+cos2a = 1+cosAMH = 1+MH/MA = (MA+MH)/MA = CH/MA = 2CH/BC =
= 2 (CH/AC).(AC/BC) = 2 cosa.cosa = 2 cos^2 (a)

c)
1-cos2a = 1-cosAMH = 1-MH/MA = (MA-MH)/MA = BH/MA = 2BH/BC =
= 2 (BH/AB).(AB/BC) = 2 sinBAH.sinACB = 2 sin^2 (a)
(^BAH = ^ACB = a vì chúng cùng phụ với góc ABC)

17 tháng 6 2016

a)\(tan3A=tan\left(A+2A\right)\)

\(=\frac{tanA+tan2A}{1-tanAtan2A}\)

\(=\frac{\frac{tanA+2tanA}{1-tan^2A}}{\frac{1-2tan^2A}{1-tan^2A}}\)

\(=\frac{\left(tanA-tan^3A+2tanA\right)}{1-tan^2A-2tan^2A}\)

\(=\frac{3tanA-tan^3A}{1-3tan^2A}\)

b)\(VT=cos^6A+sin^6A\)

\(=\left(cos^2A\right)^3+\left(sin^2A\right)^3\)

\(=\left(cos^2A+sin^2A\right)^3-3cos^2Asin^2A\left(cos^2A+sin^2A\right)^2\)

\(=1^3-3cos^2Asin^2A\left(1\right)^2\).Từ đó,\(sin^2A+cos^2A=1\)

\(=1-3cos^2Asin^2A=VP\)

18 tháng 6 2016

phần b tui sai