K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

S = 1/5.5 + 1/6.6 + 1/7.7 +.....+ 1/100.100

S < 1/4.5 + 1/5.6 +.....+ 1/99.100

S < 1/4 - 1/5 + 1/5 - 1/6 +......+ 1/99 - 1/100

S < 1/4 - 1/100

S < 24/100 < 1/2

=> S < 1/2 (đpcm)

18 tháng 4 2016

Ta có:

\(\frac{1}{5^2}<\frac{1}{4.5}\)

\(\frac{1}{6^2}<\frac{1}{5.6}\)

\(...\)

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{100}<\frac{1}{4}<\frac{1}{2}\)

Vậy \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{2}\)

18 tháng 4 2016

\(s=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

\(S=\frac{1}{5.5}+\frac{1}{6.6}+\frac{1}{7.7}+...+\frac{1}{100.100}<\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)

\(S<\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow S<\frac{1}{5}-\frac{1}{101}\)

Vì \(\frac{1}{5}<\frac{1}{2}\)nên \(\frac{1}{5}-\frac{1}{101}<\frac{1}{2}\)

hay \(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{5}-\frac{1}{101}<\frac{1}{2}\)

Vậy \(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}<\frac{1}{2}\)  (đpcm)

22 tháng 5 2018

Thì sao ?

22 tháng 5 2018

chứng minh ?

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

28 tháng 1 2016

ghi ra rồi tui bấm

khôn vừa vừa thôi chớ

9 tháng 8 2017

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=2-\dfrac{1}{100}< 2\)

\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

Vậy \(S< 2\left(đpcm\right).\)

9 tháng 8 2017

Câu 1 :

Ta có :

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

........................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)

\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)

\(\Leftrightarrow S< 2\rightarrowđpcm\)

6 tháng 4 2017
Ad dragon boy
6 tháng 4 2017

Ta có \(S>\frac{6}{20}.5=1,5>1\)

=>S>1

\(S< \frac{6}{15}.5=2\)

=>S<2 

Vậy 1<S<2

18 tháng 3 2017

bài 1 :-2009

10 tháng 4 2018

làm cách giải ra giùm

15 tháng 3 2018

Ta có :

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)

....................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+........+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.....+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\left(1\right)\)

Lại có :

\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)

\(\dfrac{1}{6^2}>\dfrac{1}{6.7}\)

............

\(\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+......+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+.....+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+.....+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)