K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

Tui biết làm nè nhưng một lúc nữa nhé

14 tháng 10 2017

Đặt \(A=1+2+2^2+2^3+...+2^{11}\)

\(A=\left(1+2+2^2+2^3+2^4+2^5\right)+2^6\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(A=63+2^6.63\)

\(A=63\left(1+2^6\right)\)

\(63⋮9\) nên \(63\left(1+2^6\right)⋮9\)

Vậy \(A⋮9\)

24 tháng 4 2017

\(\left(x-2\right)\left(x-4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2< 0\\x-4>0\end{matrix}\right.=>4< x< 2\left(1\right)\\\left\{{}\begin{matrix}x-2>0\\x-4< 0\end{matrix}\right.=>2< x< 4\left(2\right)}\end{matrix}\right.\)(1 ) vô lý=> loại

=> (x-2).(x-4)<0 <=> 2<x<4

b. ta có\(x^2+1>0\forall x\)

=>(x2 -1).(x2+1)<0 <=> (x2 -1)<0 <=> x2<1

<=> -1<x<1

câu c bạn làm tương tự

3 tháng 3 2017

Đây bạn

Viết lại bài toán cần chứng minh
13+23+33+..n3=(1+2+3+...+n)213+23+33+..n3=(1+2+3+...+n)2
Với n=1;n=2n=1;n=2 thì đẳng thức hiển nhiên đúng, hay chính là câu a,b đó :P
Giả sử đẳng thức đúng với n=kn=k
Tức 13+23+33+...k3=(1+2+3+4..+k)213+23+33+...k3=(1+2+3+4..+k)2
Ta sẽ chứng minh nó đúng với n=k+1n=k+1
Viết lại đẳng thức cần chứng minh 13+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)213+23+33+...k3+(k+1)3=(1+2+3+4..+k+k+1)2 (*)
Mặt khác ta có công thức tính tổng sau 1+2+3+4+...+n=n(n+1)21+2+3+4+...+n=n(n+1)2
⇒(1+2+3+4+...+n)2=(n2+n)24⇒(1+2+3+4+...+n)2=(n2+n)24
Vậy viết lại đẳng thức cần chứng minh
(k2+k)24+(k+1)3=(k2+3k+2)24(k2+k)24+(k+1)3=(k2+3k+2)24
⇔(k2+3k+2)2−(k2+k)2=4(k+1)3⇔(k2+3k+2)2−(k2+k)2=4(k+1)3
Bằng biện pháp "nhân tung tóe", đẳng thức cần chứng minh tuơng đuơng
⇔4k3+12k2+12k+4=4(k+1)3⇔4k3+12k2+12k+4=4(k+1)3
⇔4(k+1)3=4(k+1)3⇔4(k+1)3=4(k+1)3 ~ Đẳng thức này đúng.
Vậy theo nguyên lý quy nạp ta có đpcm.

3 tháng 3 2017

Giải hẳn hoi nha các bạn, đừng có viết luôn dạng tổng quát, nha hihiokthanghoavuibanh

12 tháng 4 2017

Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

13 tháng 2 2017

Ghi rõ hơn chút nhé , mình không hiểu gì hết

13 tháng 2 2017

quá rõ òi kn rì

10 tháng 11 2017

a) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(4.125-4.25\right)\right]\right\}\)

\(=100:\left\{250:\left[450-\left(500-100\right)\right]\right\}\)

\(=100:\left[250:\left(450-400\right)\right]\)

\(=100:\left(250:50\right)\)

\(=100:5\)

\(=20\)

b) \(109.5^2-3^2.25\)

\(=109.25-9.25\)

\(=25\left(109-9\right)\)

\(=25.100\)

\(=2500\)

c) \(\left[5^2.6-20.\left(37-2^5\right)\right]:10-20\)

\(=\left[5^2.6-20.\left(37-32\right)\right]:10-20\)

\(=\left(5^2.6-20.5\right):10-20\)

\(=\left(25.6-20.5\right):10-20\)

\(=\left(150-100\right):10-20\)

\(=50:10-20\)

\(=5-20\)

\(=-15\)

16 tháng 4 2017

\(\left(x-y^2+z\right)^2\ge0\)

\(\left(y-2\right)^2\ge0\)

\(\left(z-3\right)^2\ge0\)

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\) \(\left(x-y^2+z\right)^2=0;\text{ }\left(y-2\right)^2=0;\text{ }\left(z-3\right)^2=0\)

+\(\text{ }\left(y-2\right)^2=0\)

\(\Rightarrow\text{ }y-2=0\)

\(y=0+2\)

\(y=2\)

+ \(\left(z-3\right)^2=0\)

\(\Rightarrow z-3=0\)

\(z=0+3\)

\(z=3\)

+ \(\left(x-y^2+z\right)^2=0\)

\(\Rightarrow x-y^2+z=0\)

\(x-2^2+3=0\)

\(x-4=0-3\)

\(x-4=-3\)

\(x=-3+4\)

\(x=1\)

Vậy: \(x=1;\text{ }y=2;\text{ }z=3\)

11 tháng 2 2017

A ở đâu bn

12 tháng 2 2017

bạn học lớp mấy?

10 tháng 11 2017

100:{250:[450-(4.53-32.25)]}

=100:{250:[450-(4.125-9.25)]}

=100;{250:[450-(500-225)]}

=100:{250:[450-275]

=100:{250:175}

=100:10/7

=70

10 tháng 11 2017

\(100:\left\{250:\left[450-\left(4.5^3-3^2.25\right)\right]\right\}\)

\(=100:\left[250:175\right]\)

\(=100:\dfrac{10}{7}\)

\(=70\)

26 tháng 9 2017

Với n=1 thì đằng thức trên luôn đúng

Giả sử đẳng thức trên đúng với n=k tức là \(1^3+2^3+....+k^3=\left(1+2+...+n\right)^2\)

Ta CM : Đằng thức trên cũng đúng với n=k+1

khi đó đẳng thức trở thành

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+\left(k+1\right)\right)^2\left(1\right)\)

VP(1)=\(\left(\dfrac{k+2}{2}\right)^2=\dfrac{k^2+4k+4}{4}\)

CMTT : VT(1) cũng bằng nó

=> đpcm theo phương pháp quy nạp

27 tháng 9 2017

Chả hiểu.