\(\ge\)0 thì x^3+y^3+z^3\(\ge\)3xyz

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

 Xét  \(A=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)^3\left(x^2+y^2+z^2+2xy-xz-yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(\Rightarrow2A=2\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\)

\(=\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)

 \(x+y+z\ge0\) ; \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\) với mọi  \(x,y,z\)

\(\Rightarrow2A\ge0\)

\(\Rightarrow A\ge0\)

\(\Rightarrow x^3+y^3+z^3\ge3xyz\)

Vậy nếu \(x+y+z\ge0\) thì \(x^3+y^3+z^3\ge3xyz\)

 

5 tháng 11 2017

Ví dụ : Tìm tập hợp các ước của 24

Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }

Ta có thể tìm các ước của a bằng cách lần lượt chia a cho

các số tự nhiên từ 1 đến a để xét xem a chia hết cho những

số nào ,khi đó các số ấy là ước của a

13 tháng 5 2017

Đề là \(\frac{xy+yz+xz}{xyz}\le1\)  nhé!

Giải:

Ta có:

\(\left|H\right|=\left|\frac{xy+yz+xz}{xyz}\right|\le\frac{\left|xy\right|+\left|yz\right|+\left|xz\right|}{\left|xyz\right|}\)

\(=\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

Vậy \(H=\frac{xy+yz+xz}{xyz}\le1\) (Đpcm)

19 tháng 3 2017

không có P nhưng cuối cùng có P ở câu kết luận

20 tháng 4 2017

cái này mình chỉ viết đáp án cho bạn mình thôi

9 tháng 8 2016

x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz 
= (x+y)^3 + z^3 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z) 
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z) 
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy] 

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)

=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]

mà x^3 + y^3 + z^3 - 3xyz=0

<=> x+y+z=0

Vậy ...

Chúc bạn học tốt .

hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z

=> x-y=y-z=x-z=0 => x=y=z

26 tháng 8 2017

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 

Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 

Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 

Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 

Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 

Từ (1) và (2) suy ra a và b đều là số chẵn 

Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 

Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 

Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 

Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\Leftrightarrow ab+bc+ca\ge\frac{3}{4}\)

áp dụng bđt holder ta có:

\(\left(a^3+b^3+c^3\right)\left(b^3+c^3+a^3\right)\left(1+1+1\right)\ge\left(ab+bc+ca\right)^3\)

\(\Leftrightarrow3\left(a^3+b^3+c^3\right)^2\ge\frac{27}{64}\)

\(\Leftrightarrow a^3+b^3+c^3\ge\frac{3}{8}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{8}\left(Q.E.D\right)\)

20 tháng 6 2017

Xét vế 1 ta có: \(\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{y}\) \(=\frac{yz+yx}{xz}+\frac{z+x}{y}\)

\(=\frac{y^2z+y^2x+x^2z+xz^2}{xyz}\)nhóm hạng tử 1 với 4,2 với 3 trên tử ta được:

\(=\frac{z\left(y^2+xz\right)+x\left(y^2+xz\right)}{xyz}\)\(=\frac{\left(z+x\right)\left(y^2+xz\right)}{xyz}=\frac{z+x}{zx}\times\frac{y^2+xz}{y}\)(1);

Xét vế 2 ta có:  \(=1+\frac{x}{z}+\frac{z}{x}+1=2+\frac{x}{z}+\frac{z}{x}\)nhân 2 đa thức với nhau:

\(=\frac{2xz}{xz}+\frac{x^2+z^2}{xz}\)\(=\frac{x^2+2xz+z^2}{xz}\)\(=\frac{\left(x+z\right)^2}{xz}=\frac{z+x}{xz}\times\frac{z+x}{1}\)(2)

Từ (1) và (2),ta có: vế 1 = vế 1; mà\(\frac{y^2+xz}{y}< y+\frac{xz}{y}< x+z\)

Suy ra điều phải chứng minh...