Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
Đề là \(\frac{xy+yz+xz}{xyz}\le1\) nhé!
Giải:
Ta có:
\(\left|H\right|=\left|\frac{xy+yz+xz}{xyz}\right|\le\frac{\left|xy\right|+\left|yz\right|+\left|xz\right|}{\left|xyz\right|}\)
\(=\frac{1}{\left|x\right|}+\frac{1}{\left|y\right|}+\frac{1}{\left|z\right|}\le\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Vậy \(H=\frac{xy+yz+xz}{xyz}\le1\) (Đpcm)
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=1/2(x+y+z)(x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2)
=1/2(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]
mà x^3 + y^3 + z^3 - 3xyz=0
<=> x+y+z=0
Vậy ...
Chúc bạn học tốt .
hoặc (x-y)^2+(y-z)^2+(x-z)^2 =0 mà (x-y)^2,(y-z)^2,(x-z)^2 >=0 mọi x,y,z
=> x-y=y-z=x-z=0 => x=y=z
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\Leftrightarrow ab+bc+ca\ge\frac{3}{4}\)
áp dụng bđt holder ta có:
\(\left(a^3+b^3+c^3\right)\left(b^3+c^3+a^3\right)\left(1+1+1\right)\ge\left(ab+bc+ca\right)^3\)
\(\Leftrightarrow3\left(a^3+b^3+c^3\right)^2\ge\frac{27}{64}\)
\(\Leftrightarrow a^3+b^3+c^3\ge\frac{3}{8}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{8}\left(Q.E.D\right)\)
Xét vế 1 ta có: \(\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{y}\) \(=\frac{yz+yx}{xz}+\frac{z+x}{y}\)
\(=\frac{y^2z+y^2x+x^2z+xz^2}{xyz}\)nhóm hạng tử 1 với 4,2 với 3 trên tử ta được:
\(=\frac{z\left(y^2+xz\right)+x\left(y^2+xz\right)}{xyz}\)\(=\frac{\left(z+x\right)\left(y^2+xz\right)}{xyz}=\frac{z+x}{zx}\times\frac{y^2+xz}{y}\)(1);
Xét vế 2 ta có: \(=1+\frac{x}{z}+\frac{z}{x}+1=2+\frac{x}{z}+\frac{z}{x}\)nhân 2 đa thức với nhau:
\(=\frac{2xz}{xz}+\frac{x^2+z^2}{xz}\)\(=\frac{x^2+2xz+z^2}{xz}\)\(=\frac{\left(x+z\right)^2}{xz}=\frac{z+x}{xz}\times\frac{z+x}{1}\)(2)
Từ (1) và (2),ta có: vế 1 = vế 1; mà\(\frac{y^2+xz}{y}< y+\frac{xz}{y}< x+z\)
Suy ra điều phải chứng minh...
Xét \(A=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)^3\left(x^2+y^2+z^2+2xy-xz-yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(\Rightarrow2A=2\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
\(=\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\)
\(=\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
Vì \(x+y+z\ge0\) ; \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\) với mọi \(x,y,z\)
\(\Rightarrow2A\ge0\)
\(\Rightarrow A\ge0\)
\(\Rightarrow x^3+y^3+z^3\ge3xyz\)
Vậy nếu \(x+y+z\ge0\) thì \(x^3+y^3+z^3\ge3xyz\)