Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x+2012=a\\2y-2013=b\\3z+2014=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}P=a^5+b^5+c^5\\S=a+b+c\end{matrix}\right.\)
Ta có:
\(P-S=a^5-a+b^5-b+c^5-c=a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\)
\(\Rightarrow P-S=\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)+\left(b-1\right)b\left(b+1\right)\left(b^2+1\right)+\left(c-1\right)c\left(c+1\right)\left(c^2+1\right)\)
Nhận thấy \(\left(a-1\right)a\left(a+1\right);\left(b-1\right)b\left(b+1\right);\left(c-1\right)c\left(c+1\right)\) đều là tích của 3 số nguyên liên tiếp =>đều chia hết cho 3
\(\Rightarrow P-S\) luôn chia hết cho 3
\(\Rightarrow\) Nếu P chia hết cho 3 thì S chia hết cho 3 và ngược lại (đpcm)
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\\ \RightarrowĐPCM\)
\(2005^3+125=\left(2005+5\right)\left(2005^2+2005\cdot5+5^2\right)=2010\left(2005^2+2005\cdot5+5^2\right)⋮2010\)\(x^2+y^2+z^2+3=2\left(x+y+z\right)\\ \Leftrightarrow x^2+y^2+x^2+3=2x+2y+2z\\ \Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\\ \left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0;\left(z-1\right)^2\ge0\\ \Rightarrow\left(x-1\right)^2=\left(y-1\right)^2=\left(z-1\right)^2=0\\ \Rightarrow x-1=y-1=z-1=0\\ \Leftrightarrow x=y=z=1\)
b) \(2005^3+125\)
\(=2005^3+5^3\)
\(=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010\left(2005^2-2005.5+5^2\right)\)\(⋮\) 2010
Vậy \(2005^3+125\) chia hết cho 2010
c) x10 - 10x + 9
= x10 - x - 9x + 9
= x( x9 - 1) - 9( x - 1)
= x( x - 1)( x8 + x7 + x6 +...+ x + 1) - 9( x - 1)
= ( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9]
Do : ( x - 1) chia hết cho ( x- 1)( x - 1)
-->( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9] chia hết cho ( x - 1)2
Hay , x10 - 10x + 9 chia hết cho ( x - 1)2 , đpcm
d) 8x9 - 9x8 + 1
= 8x9 - 8x8 - x8 + 1
= 8x8( x - 1) - ( x8 - 1)
= 8x8( x - 1) - ( x - 1)( x7 + x6 +...+ x + 1)
= ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ]
Do : ( x - 1) chia hết cho ( x - 1)( x - 1)
--> ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ] chia hết cho ( x - 1)( x - 1)
Hay , 8x9 - 9x8 + 1 chia hết cho ( x - 1)2 , đpcm
Nhận thấy nếu đa thức \(g\left(x\right)\) có nghiệm \(x=a\) thì đa thức \(g\left(x\right)\) có thể được viết thành \(g\left(x\right)=\left(x-a\right)f\left(x\right)\) . Từ đó suy ra đa thức \(g\left(x\right)\) chia hết cho đa thức \(x-a\).
Ngược lại nếu đa thức \(g\left(x\right)\) có thể biểu diễn dưới dạng \(g\left(x\right)=\left(x-a\right)f\left(x\right)\) thì \(g\left(x\right)\) có nghiệm \(x=a\).
Áp dụng vào bài toán ta có thay \(x=1\) vào \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\) ta có:
\(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)^{10}-2=1+1-2=0\).
vậy \(x=1\) là nghiệm của \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\) nên :
\(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2=f\left(x\right)\left(x-1\right)\). (trong đó \(f\left(x\right)\) là đa thức có bậc dương).
Suy ra \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\) chia hết cho \(x-1\).
x200 = x200 + x198 + x196 - x198 - x196 - x194 + ... + x2 = A(x)(x4 + x2 + 1) + x2
x100 = B(x)(x4 + x2 + 1) + x4
Từ đó ta có:x200 + x100 + 1 = A(x)(x4 + x2 + 1) + x2 + B(x)(x4 + x2 + 1) + x4 + 1
Từ đó ta có ta có điều phải chứng minh
tuyệt, lâu lâu mới gặp cách giải đầy trí tuệ, tôi tisk cho bn alibaba nguyễn
Ta có \(x^{2014}+x^{2012}+1=x^{2014}-x+x^{2012}-x^2+x^2+x+1\)
=\(x\left(x^{2013}-1\right)+x^2\left(x^{2010}-1\right)+x^2+x+1=x\left(x^3-1\right)\left(...\right)+x^2\left(x^3-1\right)\left(...\right)+x^2+x+1\)
=\(\left(x^2+x+1\right)\left(...\right)\RightarrowĐPCM\)