\(n\inℕ^∗\)thì \(\left(5^{2n+1}+2^{n+4}+2^{n+1}\right)⋮23\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

a,thay n=1 vào thì sẽ bằng 24 ko chia hết cho 10 nên đề sai

b, \(5^n\left(5^2+5^1+1\right)=5^n.31\)

5 tháng 3 2019

\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n\left(9+1\right)-2^{n-1}.2\left(4+1\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\left(ĐPCM\right)\)

22 tháng 6 2017

đăng từ từ từng câu 1 ik bn!

3 tháng 7 2017

2)Tích 2 số tự nhiên liên tiếp chia hết cho 2 hay n(n+1) chia hết cho 2.

Bây h ta cần CM 1 trong 3 số chia hết cho 3:

_n=3k(k là số tn) thì n chia hết cho 3(đpcm)

_n=3k+1 thì 2n+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(đpcm)

_n=3k+2 thì n+1=3k+2+!=3k+3(đpcm)

Vậy n(n+1)(2n+1) chia hết cho 6

24 tháng 1 2019

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

24 tháng 1 2019

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)

31 tháng 10 2020

Ta có: 

\(2n:\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+...+n}\right)=2020\)

<=> \(2n:\left(\frac{2}{2}+\frac{2}{3.2}+\frac{2}{4.3}+...+\frac{2}{\left(n+1\right).n}\right)=2020\)

<=> \(n:\left(1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=2020\)

<=> \(n:\left(1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=2020\)

<=> \(n:\left(1-\frac{1}{n+1}\right)=2020\)

<=> \(n:\frac{n}{n+1}=2020\)

<=> n + 1 = 2020

<=> n = 2019

23 tháng 9 2017

a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)

\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)

\(5x+1=\pm\dfrac{6}{9}\)

+) \(5x+1=\dfrac{6}{9}\)

\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{9}\)

\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)

+) \(5x+1=\dfrac{-6}{9}\)

\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{3}\)

\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)

vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)

5 tháng 11 2016

a ) \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)=\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{2}\)

b )

\(B=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{3^2-1}+\frac{1}{5^2-1}+...+\frac{1}{\left(2n+1\right)^2-1}\)

\(=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n+2}\right)< \frac{1}{4}\).