Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,thay n=1 vào thì sẽ bằng 24 ko chia hết cho 10 nên đề sai
b, \(5^n\left(5^2+5^1+1\right)=5^n.31\)
\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2\left(4+1\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\left(ĐPCM\right)\)
2)Tích 2 số tự nhiên liên tiếp chia hết cho 2 hay n(n+1) chia hết cho 2.
Bây h ta cần CM 1 trong 3 số chia hết cho 3:
_n=3k(k là số tn) thì n chia hết cho 3(đpcm)
_n=3k+1 thì 2n+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(đpcm)
_n=3k+2 thì n+1=3k+2+!=3k+3(đpcm)
Vậy n(n+1)(2n+1) chia hết cho 6
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)
Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)
\(=k\left(k+1\right)+1\left(k+1\right)\)
\(=k^2+k+k+1=k^2+2k+1\)
Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)
\(\Rightarrow k^2+2k>k^2\)
Ta có : \(k^2< k^2+2k< k^2+2k+1\)
hay : \(k^2< k^2+2k< \left(k+1\right)^2\)
Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp
\(\Rightarrow k^2+2k\)không phải là số chính phương
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Ta có:
\(2n:\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+...+n}\right)=2020\)
<=> \(2n:\left(\frac{2}{2}+\frac{2}{3.2}+\frac{2}{4.3}+...+\frac{2}{\left(n+1\right).n}\right)=2020\)
<=> \(n:\left(1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=2020\)
<=> \(n:\left(1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)=2020\)
<=> \(n:\left(1-\frac{1}{n+1}\right)=2020\)
<=> \(n:\frac{n}{n+1}=2020\)
<=> n + 1 = 2020
<=> n = 2019
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)
\(5x+1=\pm\dfrac{6}{9}\)
+) \(5x+1=\dfrac{6}{9}\)
\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{9}\)
\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)
+) \(5x+1=\dfrac{-6}{9}\)
\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)
\(5x=\dfrac{-5}{3}\)
\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)
vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)
a ) \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)=\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{2}\)
b )
\(B=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{3^2-1}+\frac{1}{5^2-1}+...+\frac{1}{\left(2n+1\right)^2-1}\)
\(=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n\left(2n+2\right)}\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n+2}\right)< \frac{1}{4}\).