Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(=a^2x^2-2abxy+b^2y^2+a^2y^2+2abxy+b^2x^2\) \(=\left(ax-by\right)^2+\left(ay+bx\right)\)
\(=vp\)
\(\Rightarrowđpcm\)
a) Sửa đề: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Ta có: \(VP=\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2=VT\)(đpcm)
b) Ta có: \(VT=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)
\(=a^2+2ab+b^2-4ab\)
\(=\left(a+b\right)^2-4ab=VP\)(đpcm)
c) Ta có: \(VP=\left(ax-by\right)^2+\left(ay+bx\right)^2\)
\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)
\(=a^2x^2+b^2y^2+a^2y^2+b^2x^2\)
\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)\left(a^2+b^2\right)=VT\)(đpcm)
VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)
=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)
=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)
Áp dụng BĐT Bunhiacopxki :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow ay-bx=0\)
Ta có đpcm.
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina
Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron
Akai Haruma Võ Đông Anh Tuấn
mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(=\left[a\left(x+y\right)+b\left(x+y\right)\right]\left[a\left(x-y\right)-b\left(x-y\right)\right]\)
\(=\left(a+b\right)\left(a-b\right)\left(x+y\right)\left(x-y\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)
a)
(ax+by)2 - (ay+bx)2
=(ax+by-ay-bx)(ax+by+ay+bx)
=[ a(x-y) -b(x-y)][ a(x+y) + b(x+y)]
=(a-b)(x-y)(a+b)(x+y)
b)(a2+b2-5)2 - 4(ab+2)2
=(a2+b2-5-2ab-4)(a2+b2-5+2ab+4)
=[ (a-b)2 -9][ (a+b)2 -1]
=(a-b-3)(a-b+3)(a+b-1)(a+b+1)