K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

10 tháng 8 2016

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

17 tháng 8 2016

Đề đúng : Cho a,b,c > 0 và \(a+b+c\le1\)

CMR : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)

Đặt \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)

Áp dụng bđt Bunhiacopxki , ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(\sqrt{\frac{1}{x}.x}+\sqrt{\frac{1}{y}.y}+\sqrt{\frac{1}{z}.z}\right)^2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\) 

 

17 tháng 8 2016

Ta thấy: \(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)

Sử dụng Cosi 3 số ta suy ra

\(VT\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)

\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\) (Đpcm)

Đẳng thức xảy ra khi\(\begin{cases}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\)

4 tháng 7 2018

\(\left(1+\frac{b^2+c^2-a^2}{2bc}\right).\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}.\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)

\(\left(1+\frac{\left(b+c\right)^2-2bc-a^2}{2bc}\right).\frac{\frac{a+b+c}{b+c}}{\frac{b+c-a}{b+c}}.\frac{\left(b+c\right)^2-2bc-\left(b-c\right)^2}{a+b+c}\)

\(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)-2bc}{2bc}\right).\frac{a+b+c}{b+c-a}.\frac{\left(b+c-b+c\right)\left(b+c+b-c\right)-2bc}{a+b+c}\)

\(\left(1+\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}-1\right).\frac{a+b+c}{b+c-a}.\frac{4bc-2bc}{a+b+c}\)

\(\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}.\frac{2bc}{b+c-a}\)

\(\frac{\left(b+c-a\right)\left(b+c+a\right)}{b+c-a}\)

\(b+c+a\)

4 tháng 7 2020

Áp dụng BĐT Cauchy, ta có :

\(a^2+b^2\ge2ab\)

\(b^2+1\ge2b\)

\(\Rightarrow\) \(a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\) \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\) ( 1 )

Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\) ( 2 )

\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\) ( 3 )

Từ ( 1 ), ( 2 ) và ( 3 ) cộng vế theo vế, ta có :

\(VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=\frac{ac}{ab.ac+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)

\(=\frac{ac+a+1}{ac+a+1}=1\)

\(\Rightarrow\) \(VT\le\frac{1}{2}.1=\frac{1}{2}\)

\(\Rightarrow\) đpcm

23 tháng 4 2016

Đặt \(A=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

Áp dụng bất đẳng thức cô-si, ta có:

\(a^2+b^2\ge2.\sqrt{a^2.b^2}=>a^2+b^2\ge2ab\)

\(b^2+1\ge2.\sqrt{b^2.1}=>b^2+1\ge2b\)

=>\(a^2+b^2+b^2+1\ge2ab+2b\)

=>\(a^2+2b^2+1+2\ge2ab+2b+2\)

=>\(a^2+2b^2+3\ge2ab+2b+2\)

=>\(a^2+2b^2+3\ge2\left(ab+b+1\right)\)

=>\(\frac{1}{a^2+2b^2+3}\le\frac{1}{2.\left(ab+b+1\right)}\)

Chứng minh tương tự, ta có:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2.\left(bc+c+1\right)}\)

\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ca+a+1\right)}\)

=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2.\left(ab+b+1\right)}+\frac{1}{2.\left(bc+c+1\right)}+\frac{1}{2.\left(ca+a+1\right)}\)

=>\(A\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ca+a+1}\)

=>\(A\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca.\left(ab+b+1\right)}+\frac{a}{a.\left(bc+c+1\right)}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{abc.c+abc+ca}+\frac{a}{abc+ca+a}+\frac{1}{ca+a+1}\right)\)

Vì abc=1(theo giả thiết)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{c+1+ca}+\frac{a}{1+ca+a}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\left(\frac{ca}{ca+a+1}+\frac{a}{ca+a+1}+\frac{1}{ca+a+1}\right)\)

=>\(A\le\frac{1}{2}.\frac{ca+a+1}{ca+a+1}\)

=>\(A\le\frac{1}{2}.1\)

=>\(A\le\frac{1}{2}\)

=>\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

=>ĐPCM

23 tháng 4 2016

vâng ạ 

4 tháng 11 2018

     \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc=0\)

\(\Rightarrow ab^2+ac^2+bc^2+ba^2+c\left(a+b\right)^2=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)

\(\Rightarrow\left(a+b\right)\left(ab+c^2+ca+cb\right)=0\)

\(\Rightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Từ đó a = -b hoặc b = -c hoặc c = -a

Nếu a = -b mà \(a^3+b^3+c^3=1\Rightarrow\left(-b\right)^3+b^3+c^3=1\Rightarrow c^3=1\Rightarrow c=1\)

Khi đó: \(A=\frac{1}{\left(-b\right)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{1^{2017}}=0+1=1\)

Tương tự với các trường hợp b = -c và a = -c, ta tính được A = 1

20 tháng 5 2016

\(\frac{1}{p-a}\)+\(\frac{1}{p-b}\)+\(\frac{1}{p-c}\)\(\ge\)2.(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))

 Ta có: 

\(\frac{1}{p-a}\)\(\frac{1}{\frac{a+b+c}{2}-a}\)=\(\frac{2}{b+c-a}\)

\(\frac{1}{p-b}\)=\(\frac{1}{\frac{a+b+c}{2}-b}\)=\(\frac{2}{a+c-b}\)

\(\frac{1}{p-c}\)=\(\frac{1}{\frac{a+b+c}{2}-c}\)=\(\frac{2}{a+b-c}\)

Vì a,b,c>0 ta có dụng BĐT sau:\(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\)

 

\(\frac{2}{b+c-a}\)+\(\frac{2}{a+c-b}\)\(\ge\)\(\frac{2.4}{b+c-a+a+c-b}\)=\(\frac{8}{2c}\)=\(\frac{4}{c}\)

\(\frac{2}{b+c-a}\)+\(\frac{2}{a+b-c}\)\(\ge\)\(\frac{2.4}{b+c-a+a+b-c}\)=\(\frac{8}{2b}\)=\(\frac{4}{b}\)

\(\frac{2}{a+b-c}\)+\(\frac{2}{a+c-b}\)\(\ge\)\(\frac{2.4}{a+b-c+a+c-b}\)=\(\frac{8}{2a}\)=\(\frac{4}{a}\)

Cộng vế với vế của (1);(2) và(3) ta co:

\(\frac{4}{b+c-a}\)+\(\frac{4}{a+c-b}\)+\(\frac{4}{a+b-c}\)\(\ge\)\(\frac{4}{c}\)+\(\frac{4}{b}\)+\(\frac{4}{a}\)

\(\frac{2}{b+c-a}\)+\(\frac{2}{a+c-b}\)+\(\frac{2}{a+b-c}\)\(\ge\)2(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))

Vậy\(\frac{1}{p-a}\)+\(\frac{1}{p-b}\)+\(\frac{1}{p-c}\)\(\ge\)2(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))

dấu = xảy ra khi a=b=c

12 tháng 7 2023

Mày nhìn cái chóa j