K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016
  • Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2008}{3^{2008}}\)(1)
  • Ta có: \(\frac{1}{3}S=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2007}{3^{2008}}+\frac{2008}{3^{2009}}\)(2)
  • Trừ vế với vế 2 đửng thức (1) và (2) ta có:

\(S-\frac{1}{3}S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\frac{2008}{3^{2009}}<\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)(3)

  • Đặt \(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
  • \(\left(1-\frac{1}{3}\right)P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2008}}+\frac{1}{3^{2009}}\right)=\frac{1}{3}-\frac{1}{3^{2009}}<\frac{1}{3}\)
  • \(\frac{2}{3}P<\frac{1}{3}\Rightarrow P<\frac{1}{2}\)(4)
  • Từ (3) và (4) 

\(\Rightarrow\frac{2}{3}S<\frac{1}{2}\Rightarrow S<\frac{3}{4}\)(ĐPCM)

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}

19 tháng 4 2016

câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008

\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)

\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2007.2008}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}\)

\(=1-\frac{1}{2008}\)<1 (2)

mà 1<3 (3)

từ (1),(2) và (3)=> đpcm

24 tháng 6 2015

tử là M mẫu là N ta dc

\(M=2008+\frac{2007}{2}+...+\frac{1}{2008}\)

       \(=\left(1+...+1\right)+\frac{2007}{2}+...+\frac{1}{2008}\)

       \(=\frac{2009}{2}+...+\frac{2009}{2008}+\frac{2009}{2009}\)

       \(=2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)

vậy ta có 

\(A=\frac{M}{N}=\frac{2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}}\)\(=2009\)

 

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

7 tháng 7 2016
  • 1/2.2<1/1.2                     
  • 1/3.3<2.3 
  •         ... 
  •        1/1990.1990<1/1990.1989 
  • => 1/2^2+... +1/1990^2< 1/1.2+1/2.3+...+ 1/1990+1989 

=>1/2^2+...+1/1990^2<1/1990<3/4 

19 tháng 7 2015

 bạn xem tại đây nhé ^^

19 tháng 7 2015

dang phuong thao la loai copy cua olm ma

19 tháng 10 2017

Ta có: \(A=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+....+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

Xét tử : \(2008+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(=\left(1+1+...+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)( có 2008 số hạng 1 )

\(=\left(1+\frac{2007}{2}\right)+\left(1+\frac{2006}{3}\right)+...+\left(1+\frac{2}{2007}\right)+\left(1+\frac{1}{2008}\right)+1\)

\(=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

Ghép tử và mẫu....

Vậy A = 2009

26 tháng 5 2016

Đặt A=1/51+1/52+1/53+...+1/52008

5A=1+1/51+1/52+...+1/52007

5A-A=(1+1/51+1/52+...+1/52007)-(1/51+1/52+1/53+...+1/52008)

4A=1-1/52008<1

A<1/4


 

11 tháng 5 2018

Đặt   \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt    \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)

\(2B=3-\frac{1}{3^{99}}\)

\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

Thay B vào 4A ta có:

\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)

\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)

Vì \(\frac{3}{8}>\frac{3}{16}\)

\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)

Vậy \(A< \frac{3}{16}\)