K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta đặt:A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...\frac{1}{n^2}\)

Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

     \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

....

     \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

=> A < \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{\left(n-1\right)n}\)

=> A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

=> A < \(1-\frac{1}{n}< 1\)(ĐPCM )

Vậy A < 1

Chững minh sao bạn !!!!!!!!!!!

3 tháng 10 2018

\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{4}\)

Ta thấy:\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(\frac{1}{6^2}< \frac{1}{4.5}\)

\(\frac{1}{8^2}< \frac{1}{6.7}\)

.......

\(\frac{1}{2n^2}< \frac{1}{\left(2n^2-2\right)\left(2n^2-1\right)}\)

Do đó:\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2n^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(2n^2-2\right)\left(2n^2-1\right)}\) hay

\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2n^2-2}-\frac{1}{2n^2-1}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{2n^2-1}\). Thay n = 2 ta có:

\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{3}-\frac{1}{2.2^2-1}=\frac{1}{3}-\frac{1}{7}< \frac{1}{4}^{\left(đpcm\right)}\)

3 tháng 10 2018

nhờ bạn giải thích kết quả của phép tính từ \(\frac{1}{8^2}+\frac{1}{10^2}+....+\frac{1}{2n^2}=?\)bao nhiêu và bạn làm thế nào để triệt tiêu còn lại số hạng đầu và số hạng cuối của dãy tính vì theo nếu theo kết quả bạn thì các sô hạng thứ ba trở đi theo quy luật mẫu các phân số được viết dưới dạng \((2n^2-2).\left(2n^2-1\right)\)thì kết quả ko thể triệt tiêu số hạng trước cho số hạng sau được. nhờ bạn giúp cảm ơn bạn(tth).

30 tháng 3 2017

Khó dữ vậy!!!!

6 tháng 5 2017

Đợi tí , mạng chậm

28 tháng 8 2020

chịu chưa học

28 tháng 8 2020

Bài làm:

Ta thấy: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; ... ; \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\) (vì n là STN)

=> đpcm

22 tháng 7 2016

Ta có : 

\(N=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Ta thấy : \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

.......

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)

\(\Rightarrow\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< 1.\frac{1}{2^2}\)

\(\Rightarrow N< \frac{1}{4}\)(ĐPCM)

Ủng hộ mk nha !!! ^_^

12 tháng 5 2019

Ta có 

\(P< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

=> \(P< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}\)

=> \(P< 1\)(điều phải chứng minh)

12 tháng 5 2019

#)Giải :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}\)

\(A< 1\)

       Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

     #~Will~be~Pens~#

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~