Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)
\(\Rightarrow A>1+0=1\)(1)
Ta lại có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1+1-\frac{1}{100}< 2\)(2)
Từ (1) và (2) => 1<A<2
=> A không phải là số tự nhiên
Ta có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{99.100}\)
\(\Leftrightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{99}-\frac{1}{100}=1+1-\frac{1}{100}\)\(=\frac{199}{100}< 2\)
Lại có : \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}>1\)
Nên : \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}< 2\)
Vậy \(1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\) ko phải là số tự nhiên
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< 1\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}\)
\(A< \frac{99}{100}< 1\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\text{ ko phải là 1 số tự nhiên ( đpcm )}\)
Ta có: \(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
................
\(\frac{1}{100^2}>0\)
\(\Rightarrow A>0\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< A< 1\)
Vậy A ko là STN.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy A không phải là một số tự nhiên
bạn chỉ cần lấy 1/100-1 là sẽ ra
nhớ tích và kết bạn với tớ nhé
\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}=\frac{2.3....100+1.3.....100+1.2.4.....100+....+1.2....99}{1.2.3....100}\)
\(\text{Trên tử có số hạng:}1.2.3....98.100\text{ không chia hết cho 99 còn các số hạng khác đều chia hết cho 99}\)
\(\text{nên tử không chia hết cho 99(1) mà mẫu:}1.2.3....99.100\text{ có thừa số 99 nên chia hết cho 99(1)}\)
\(\text{Từ (1) và (2) suy ra: A}\notinℕ\)
+\(A>1\)
Ta có :\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2018^2}+\frac{1}{2019^2}>1\) 1
+\(A< 2\)
Ta có:\(1=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...........................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow A< 1+1-\frac{1}{2019}=2-\frac{1}{2019}< 2\)2
Từ 1 và 2 => A không là số tự nhiên
bn chỉ cần tính kết quả là được vì nó là phân số ko phải số tự nhiên hihi 66366377377272
mẫu chung: 2^6.3.5.7...99
gọi tổng đó là A
A=1+1/2+1/3+...+1/100
A=k1+k2+k3+...+k100/2^6.3.5.7.9...100
ta thấy phân so k^64/64 sẽ bằng có tử bằng: 3.5.7...99. mà các phân số khác có tử đều chẵn (vì các phân số lẻ đều có tử có thừa số 2^6, phân số chẵn sẽ có ít nhất 1 thừa số 2)
=> tử của A lẻ nên ko chia hết cho 2. mà mẫu A=2^6.3.5.7...99 chia hết 2
=> A ko phải số tự nhiên
chị trình bày còn lủng củng. em hiểu rồi trình bày lại nhé