K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

CM:

Để n + 3/n + 4 tối giản <=> ƯCLN(n + 3; n + 4) \(\in\){1; -1}

Gọi ƯCLN(n + 3;n + 4) = d 

=> n + 3 \(⋮\)d ; n + 4 \(⋮\)d

=> (n + 3) - (n + 4) = -1 \(⋮\)d => d \(\in\){1; -1}

=> \(\frac{n+3}{n+4}\)là p/số tối giản \(\forall\)n

Để \(\frac{n+1}{2n+3}\) tối giản <=> ƯCLN(n + 1;2n + 3) \(\in\){1; -1}

Gọi d là ƯCLN(n + 1;2n + 3}

=> n + 1 \(⋮\)d      => 2(n + 1) \(⋮\)d     => 2n + 2 \(⋮\)d

 => 2n + 3 \(⋮\)d

=> (2n + 2) - (2n + 3) = -1 \(⋮\)d => d \(\in\){1; -1}

=> \(\frac{n+1}{2n+3}\)tối giản \(\forall\)n

5 tháng 7 2019

a) Gọi ƯCLN(n+3,n+4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\)=> \(\left(n+4\right)-\left(m+3\right)⋮d\)=> \(n+4-n-3⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(n + 1,2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> \(\left(2n+3\right)-\left(2n+2\right)⋮d\)

=> \(2n+3-2n-2\)

=> \(1⋮d\)

=> \(d=1\)

=>  \(\frac{n+1}{2n+3}\)là phân số tối giản

20 tháng 2 2016

Gọi UCLN(2n+3,4n+8)=d

Ta có:2n+3 chia hết cho d

         4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

4n+8 chia hết cho d

=>4n+6 chia hết cho d

4n+8 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

=>2 chia hết cho d

=>d={1,2}

Mà 2n+3 là số lẻ nên không chia hết cho 2

=>d=1

Vậy phân số 2n+3/4n+8 tối giản

DD
27 tháng 2 2021

a) Đặt \(d=\left(n+1,2n+3\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

Suy ra \(d=1\)

Do đó ta có đpcm. 

b) Bạn làm tương tự ý a). 

c) Đặt \(d=\left(3n+2,5n+3\right)\).

Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).

Suy ra \(d=1\)

27 tháng 2 2021
N=2 2n=2.10
5 tháng 5 2016

 Gọi d là ƯCLN của n+1 và 2n+3, ta có:

(2n+3)-(n+1) chia hết cho d

=> (2n+3)-2(n+1) chia hết cho d

=> 2n+3-2n-2 chia hết cho d

=> 2n-2n+3-2 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy n+1/2n+3 là 2 phân số tối giản 

5 tháng 6 2019

Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)

\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)

Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:

\(2n\left(n+2\right)⋮2\)

=> \(2n\left(n+2\right)\)là số chẵn

mà 23 là số lẻ

\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản

\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản

Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)

8 tháng 6 2017

gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d

\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)

Mà n4 + 3n2 + 1 \(⋮\)d

= n4 + 2n2 + n2 + 1

= ( n4 + 2n2 + 1 ) + n2 

= ( n2 + 1 ) 2 + n2 \(⋮\)d

\(\Rightarrow\)n2 \(⋮\)d

\(\Leftrightarrow\)\(⋮\)d

8 tháng 6 2017

Tham khảo nha bạn! Mình không có thời gian!

Link:

tth 

Đs