K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

bn có lời giải chưa

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)