Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\)
\(=\left(x-y\right)^3=1\)
Theo giả thiết:
\(x-y=1\Rightarrow x-1=y\Rightarrow\left(x-1\right)^3=y^3\Rightarrow x^3-3x^2+3x-1=y^3\Rightarrow x^3-y^3-3xy=3x^2-3x+1-3xy\)
\(\Rightarrow x^3-y^3-3xy=3x\left(x-1-y\right)+1=3x\left[\left(x-y\right)-1\right]+1=0+1=1\)
Câu a : Ta có :
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy=x^2-xy+y^2+3xy=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)
Câu b : Ta có :
\(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
1) \(A=x^3+y^3+3xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(A=x^2-xy+y^2+3xy\)
\(A=x^2+2xy+y^2=\left(x+y\right)^2=1\)
Vậy A = 1.
Có: \(x+y+z=0\)
CM được: \(x^3+y^3+z^3=3xyz\)
Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow xy+xz+yz=0\)
\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)
\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)
\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)
Có: \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)
Từ (1) và (2):
Có: \(x^6+y^6+z^6=3x^2y^2z^2\)
Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)
Ta có : Thêm \(-3xyz\) vào 2 vế , ta có :
\(VT=x^3+y^3+z^3-3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\left(1\right)\)
\(VP=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow x^3+y^3+x^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
\(\Rightarrowđpcm\)
Cho sủa đề nha : \(x^3+y^3+x^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
a.\(x^3+y^3+3xy=x^3+y^3+3xy\left(x+y\right)=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1\)
b.\(x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1\)
a) x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 1 - 3xy.0
= 1
b) x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1
a) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Rightarrow x^3+y^3+3xy=1\)
\(\Rightarrow P=1\)
b) \(Q=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)
\(Q=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)
Thay x + y = 1 vào Q
\(Q=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\)
\(Q=1-3xy+3xy-6x^2y^2+6x^2y^2\)
\(Q=1\)
Ta có : x + y = -1
=> ( x + y )2 = 1
=> - ( x + y )2 = -1
=> - ( x2 + 2xy + y2 ) = -1
=> -x2 - 2xy - y2 = -1
=> - x2 + xy - y2 - 3xy = -1
=> -( x2 - xy + y2 ) - 3xy = -1
=> -1 . ( x2 - xy + y2 ) - 3xy = -1
Thay -1 = x + y vào biểu thức ta có :
( x + y ) . ( x2 - xy + y2 ) - 3xy = -1
=> x3 + y3 - 3xy = -1 ( ĐPCM )