K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

Bạn tham khảo :

       Câu hỏi của Soái ca 2k6       

8 tháng 10 2019

Ta có: abc chia hết cho 27 => abc0 chia hết cho 27.

=> 1000a + bc0 chia hết cho 27.

=> 999a + a + bc0 chia hết cho 27.

=> 27.37.a + bac chia hết cho 27.

Vì 27.37.a chia hết cho 27 nên bac chia hết cho 27 ( đpcm )

\(\overline{abc}⋮27\)

\(\Rightarrow\overline{abc0}⋮27\)

\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)

\(\Rightarrow999a+a+\overline{bc0}⋮27\)

\(\Rightarrow27.37a+\overline{bca}⋮27\)

do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)

3 tháng 2 2023

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

3 tháng 2 2023

Các bạn giải nhanh cho mình nhé. Thanks!

24 tháng 1 2019

S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương

24 tháng 1 2019

lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0

12 tháng 10 2017

\(A=\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111\left(a+b+c\right)\)

 

Để A là 1 số chính phương thì a + b + c phải = 111. Nhưng a, b, c < 10 nên a + b + c \(\ne\) 111. \(\Rightarrow\) A không phải là 1 số chính phương \(\Rightarrow\)  ĐPCM

 

 

28 tháng 3 2016

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

4 tháng 10 2016

Ta có:

\(\overline{abcd}=100.\overline{ab}+\overline{cd}\)

\(=100.2.\overline{cd}+\overline{cd}\)

\(=200.\overline{cd}+\overline{cd}\)

\(=201.\overline{cd}⋮67\)

Vậy nếu \(\overline{ab}=2.\overline{cd}\) thì \(\overline{abcd}⋮67\)

18 tháng 8 2017

a,Ta có: \(\overline{abcabc}\) = \(\overline{abc}\).1001

Để \(\overline{abcabc}\) là số chính phương thì \(\overline{abc}\) chỉ có thể là 1001

\(\overline{abc}\) là số có 3 chữ số

=> \(\overline{abc}\) không phải số chính phương

b,Ta có \(\overline{ababab}\) = \(\overline{ab}\).10101

Để \(\overline{ababab}\) là số chính phương thì \(\overline{ab}\) chỉ có thể là 10101

\(\overline{ab}\) là số có hai chữ số

=> \(ababab\) không phải là số chính phương

c,\(\overline{abc}+\overline{bca}+\overline{cab}\)

= 100a+10b+c+100b+10c+a+100c+10a+b

= 111a+111b+111c

= 111.(a+b+c)

=> \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải số chính phương vì a,b,c là các chữ số tự nhiên a+b+c \(\ne\) 111

6 tháng 8 2019

Theo bài ra ta có : abc - acb = 27 \(\left(0< a< 10\right);\left(0\le b;c< 10\right);\left(a;b;c\inℕ\right)\)

=> (100a + 10b + c) - (100a + 10c + b) = 27

=> 9b - 9c = 27

=> 9(b -c) = 27

=>   b - c = 3 (1)

Để \(abc⋮2\Rightarrow c\in2k\left(k\inℕ\right)\left(2\right)\)

Để \(abc⋮5\Rightarrow\orbr{\begin{cases}c=5\\c=0\end{cases}\left(3\right)}\)

Từ (2) và (3) => c = 0

Thay c vào (1) ta có : 

b - 0 = 3

=> b = 3

=> Số mới có dạng \(\overline{a30}\)

Để \(\overline{a30}⋮3\Rightarrow\left(a+3+0\right)⋮3\Rightarrow\left(a+3\right)⋮3\)

\(\Rightarrow a\in\left\{3;6;9\right\}\)

Vậy \(\overline{abc}\in\left\{930;630;330\right\}\)

Ta thấy: số chia hết cho cả 2 và 5 phải có tận cùng là 0

=> c = 0

\(\overline{ab0}-\overline{a0b}=27\)

0 - b = 7 => b = 3

Ta có: \(\overline{a30}-\overline{a03}=27\)

Mà ta thấy số chia hết cho 3 thì tổng các chữ số của nó = 3

=> 3 + 0 = 3

=> \(\overline{abc}\in\left\{330;630\right\}\)

Hội con 🐄 chúc bạn học tôt!!!