K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

\(A=1^n+2^n+3^n+4^n\)

n không chia hết cho 4 thì n chỉ có thể có các số dư: 1; 2; 3 khi chia cho 4.

Ta lập bảng chữ số tận cùng

nn=4k+1n=4k+2n=4k+3
1n111
2n...2...4...8
3n...3...9...7
4n...4...6...4
A=1n+2n+3n+4n...0...0...0

A luôn có tận cùng là 0 nên A chia hết cho 10 => A chia hết cho 5 - đpcm

16 tháng 11 2019

mình thấy hơi khó

11 tháng 8 2018

n2+n+1 = n(n+1) + 1

vì n(n+1) là tích của hai số tự nhiên liên tiếp nên n(n+1) + 1 là số lẻ 

n(n+1) + 1 ko chia hết cho 4 (ĐPCM)

vì tích hai số liên tiếp có tận cùng là 0;2;6

=> n(n+1) có tận cùng 1 trong số 0;2;6 => n(n+1) +1 có tận cùng 1 trong số 1;3;7 ko chia hết cho 5(đpcm)

31 tháng 12 2018

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

22 tháng 7 2018

Bài 4 :

Gọi các số đó là a,a+1,a+2,a+3.......,a+45

Ta có 

a+(a+1)+(a+2)+(a+3)+..........+(a+45)

46a+ (1+2+3+4+5+.........+45)

46a+1035

Ta thấy 46a chia hết cho 46 , 1035 không chia hết cho 46 

=> 46a +1035 không chia hết cho 46

Vậy 46 số tự nhiên liên tiếp không chia hết cho 46 

22 tháng 7 2018

Nếu n chia 5 dư 1, 3 thì n^2 chia 5 dư 1

=> n^2 + 4 chia hết cho 5

Nếu n chia 5 dư 2,4 thì n^2 chia 5 dư 4

=> n^2 + 1 chia hết cho 5

Nếu n chia hết cho 5

=> A chia hết cho 5

4 tháng 3 2019

Sai đề ?

Đề đúng là \(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)

Biến đổi tương đương :
\(4^n\left(4^3+4^2-4-1\right)\) = \(4^n\cdot75=4^{n-1}\cdot4\cdot75=4^{n-1}\cdot300⋮300\)

=> ĐPCM

4 tháng 3 2019

ê

3 tháng 3 2019

bạn ghi sai đề ; 4n+3+4n+2-4n-1-4n =4n( 43+42-4-1)=4n.75 =4n-1.300 ta thấy n\(\inℕ^∗\) nên 4n-1.300 \(⋮\)300 \(\Rightarrow\)..............

......................(bạn ghi câu kết nha