Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu a+b=0
*)xét a=b=0
=>a^2+b^2=0 (1)
*)a dương âm hoặc b âm a dương và \(\ne\)0
vì tất cả các số thuộc Z có lũy thừa 2 đều là số dương
=>a^2+b^2 >0 (2)
từ (1) và (2) ta có a^2+b^2\(\ge\)0
Áp dụng bđt Cauchy, ta có : \(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2b}{b}}=2a\)
tương tự : \(\frac{b^2}{c}+c\ge2b\) ; \(\frac{c^2}{a}+a\ge2a\)
\(\Rightarrow2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)(đpcm)
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được :
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) (đpcm)
Biến đổi tương đương:
\(4\left(a^3+b^3\right)\ge a^3+3ab\left(a+b\right)+b^3\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) luôn đúng do \(a;b\ge0\)
Dấu "=" xảy ra khi \(a=b\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)
\(\Rightarrow ab+bc+ca\ge abc\left(a+b+c\right)\)
Lại có: \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Rightarrow\frac{\left(a^2+b+c\right)}{3}\ge abc\left(a+b+c\right)\)
\(\Rightarrow a+b+c\ge3abc\)
Bài 2 :
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)
( Do \(a+b+c=abc\) )
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)
P/s : Cho hỏi bài 1 có a,b,c > 0 không ?
Khuyến mãi thêm bài 1 :))
Áp dụng BĐT AM-GM ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)
Tương tự ta có :
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)
Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\left(1\right)\)
\(\Leftrightarrow\sqrt{2}.\sqrt{a^2+b^2}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2>a^2+b^2+2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (2)
(2) đúng => (1) đúng
-----------------------GOOD LUCK----------------------
Theo bài ra , ta có :
\(\left(a+b\right)^2\ge2\sqrt{a^2b^2}-ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge2ab-ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge2ab-ab\)
\(\Leftrightarrow a^2+b^2\ge-ab\)
\(\Leftrightarrow a^2+b^2+ab\ge0\)
\(\Leftrightarrow a^2+2ab+b^2+a^2+b^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+a^2+b^2\ge0\)(Luôn đúng)
Dấu '=' xảy ra khi và chỉ khi a = b = 0
<=>\(a^2\left(a-b\right)-b^2\left(a-b\right)\)>=0
<=>\(\left(a-b\right)\left(a^2-b^2\right)\)>=0
<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0
Vì \(\left(a-b\right)^2\)>=0
<=>\(\left(a-b\right)^2\left(a+b\right)\)>=0 (đpcm)
Vì \(a,b\ge0\)nên
+ \(a+b\ge0\)(1)
+ \(\left(a-b\right)^2\ge0\)(2)
Nhân vế với vế của 1 và 2 , ta được :
\(\left(a+b\right)\left(a-b\right)^2\ge0\Leftrightarrow\left(a+b\right)\left(a^2-ab-ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab.\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)