Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 Bài này sai đề bạn nhé!!!!
Bài 2:
a) 74n = (74)n =2401n
Mà 2401n luôn có tận cùng bằng 1
\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5
b)34n + 1 = (34)n . 3 = 81n . 3
Mà (......1)n luôn có tận cùng là 1
\(\Rightarrow\)(......1)n .3 tận cùng là 3
\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5
c)Câu này hình như sai đề bạn nhé!!!
d)92n + 1 = (92)n . 9 = 81n .9
Mà 81n luôn có tận cùng là 1
\(\Rightarrow\) 81n . 9 có tận cùng là 9
\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10
Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!
a)Ta có :74n-1=...1-1=...0\(⋮\)5
Vậy 74n-1\(⋮\)5
b)Ta có 34n+1+2=34nx3+2=...1x3+2=...3+2=...5\(⋮\)5
Vậy ...
c)Ta có :24n+1+3=24nx2+3=...6x2+3=...2+3=...5\(⋮\)5
Vậy ...
d)Ta có :24n+2+1=24nx22+1=...1x4+1=...4+1=...5\(⋮\)5
Vậy ...
e)Ta có :92n+1+1=92nx9+1=...1x9+1=...9+1=...0\(⋮\)10
Vậy
f)mik ko biết làm
g)mik cũng ko biết làm
Lời giải:
a. Ta có:
$7^4\equiv 1\pmod 5$
$\Rightarrow 7^{4n}\equiv 1^n\equiv 1\pmod 5$
$\Rightarrow 7^{4n}-1\equiv 0\pmod 5$
Hay $7^{4n}-1\vdots 5$
b.
$2^4\equiv 1\pmod 5$
$\Rightarrow 2^{4n+1}=2.2^{4n}\equiv 2.1^n\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}+3\equiv 2+3\equiv 5\equiv 0\pmod 5$
$\Rightarrow 2^{4n+1}+3\vdots 5$
a)Ta có : 74n-1 ~(74)n-1~(...1)n-1~(...1)-(...1)~...0
~74n-1-1 chia hết cho 5
b)92n+1+1~92n.9+1~(92)n.9+1~(...1)n.(...9)+1~(...1).(...9)+(...1)~(...9)+(...1)~...0
~92n+1+1 chia hết cho 10
Ý c làm tương tự ý b
a) vì 7^4 có tận cùng bằng 1 mà tận cùng bằng 1 thì nhân số mũ bao nhiêu cũng bằng 1
7 ^14n tận cùng là 1 mà 1 - 1 = 0
tận cùng là 0 chia hết cho 5
vậy n có bằng bao nhiêu thì cũng chia hết cho 5
b)9^ 2n+1=9.9^ 2n=9.81n
81^ n luôn tận cùng là 1 nên 9.81 n tận cùng là 9=> 9 ^2n+1+1 tận cùng là 0 nên chia hết cho 10
c) 2^ 4n+2=4.16 ^n
16^ n luôn tận cùng là 6 nên 4.6 n tận cùng là 4=> 2 ^4n+2+1 tận cùng là 5 nên chia hết cho 5
a)\(7^{4n}-1\)
Ta có:\(7^{4n}-1\)=\(\left(7^4\right)^n-1=\left(...1\right)^n-1=\left(...1\right)-1=...0\)
Vì các số có tận cùng là 0 thì chia hết cho 5 do đó \(7^{4n}-1\)
chia hết cho 5(đpcm)
Các câu kia tương tự
a) Chữ số tận cùng của 74n là : ( 7 * 7 * 7 * 7 ) mod 10 = 1
Vậy chữ số tận cùng của 74n - 1 là : ( 7 * 7 * 7 * 7 - 1 ) mod 10 = 0 ( đpcm )
b) Tương tự
Ta có 74n - 1 = (74)n - 1 = (...1)n - 1 = (...1) - 1 = (...0)
=> 74n - 1 \(⋮\)5
Ta có 34n + 1 + 2 =34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 =(...1).3 + 2 =(...3) + 2 = (...5)
=> 34n + 1 + 2 \(⋮\)5