K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

từ đề bài=> a2+2\(\sqrt{2}\)ab+2b2=2012-\(\sqrt{2}\). 2011
               =>a2+2b2-2012 =-\(\sqrt{2}\) . (2011-2ab)
               =>(a2+2b2-2012)2= 2(2011-2ab)2
=> 
(a2+2b2-2012)2≡0(mod2) mà 2 là số nguyên tố
 =>a2+2b2-2012≡0(mod2)
=> (a2+2b2-2012)2≡0(mod4) (1)
 ta có 2011-2ab là số lẻ vì 2ab chẵn=>(2011-2ab)2lẻ
=> 2(2011-2ab)chỉ chia hết cho 2 nhưng không chia hết cho 4 (2)

từ (1) và (2)=> (a2+2b2-2012)2= 2(2011-2ab)2 vô lí 
Vậy không tồn tại số nguyên a,b thoả mãn (a+b√2)2 = 2012 + 2011√2

30 tháng 6 2023
18 tháng 10 2018

Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)

\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012

\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012

\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012

Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)

Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)

\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)

\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)

\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)