Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+3^4+3^5+.....+3^{2017}\)
\(=1+3+\left(3^2+3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}+3^{2017}\right)\)
\(=4+3^2\left(1+3+3^2+3^3\right)+.....+3^{2014}\left(1+3+3^2+3^3\right)\)
\(=4+3^2\cdot40+....+3^{2014}\cdot40\)
\(=4+40\left(3^2+.....+3^{2014}\right)\) chia 40 dư 4.
\(\frac{3-x}{2016}-1=\frac{2-x}{2017}+\frac{1-x}{2018}\)
\(\Rightarrow\frac{3-x}{2016}-1+2=\frac{2-x}{2017}+\frac{1-x}{2018}+2\)(thêm 2 vô mỗi vế)
\(\Rightarrow\frac{3-x}{2016}+1=\left(\frac{2-x}{2017}+1\right)+\left(\frac{1-x}{2018}+1\right)\)
\(\Rightarrow\frac{2019-x}{2016}=\frac{2019-x}{2017}+\frac{2019-x}{2018}\)
\(\Rightarrow\left(2019-x\right)\cdot\frac{1}{2016}=\left(2019-x\right)\left(\frac{1}{2017}+\frac{1}{2018}\right)\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3-\dfrac{5}{2}+\dfrac{7}{3}\)
\(=-2-\dfrac{1}{2}=-\dfrac{5}{2}\)
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
\(\frac{1}{6}:\frac{-5}{11}=\frac{-11}{30}\)
\(\frac{-11}{30}=-0,3\left(6\right)\)
\(\frac{4}{9}:\frac{-7}{18}=\frac{-8}{7}\)
\(\frac{-8}{7}=-1\left(142857\right)\)