Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2=\left(x-1\right).Q\left(x\right)+r\)(1)
\(\Rightarrow r\) là số dư
Thay x = 1 vào pt (1) ta có : \(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)-2=\left(1-1\right).Q\left(1\right)+r\)
\(\Leftrightarrow1+1-2=r\Rightarrow r=0\)
Do phét chia trên có số dư là 0 nên \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2\) chia hết cho \(x-1\)
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
Câu 2:
Ta có:
\(P\left(x\right)=x^{100}+x^2+1\)
\(=x^{100}-x^{99}+x^{98}+x^{99}-x^{98}+x^{97}+...+x^3-x^2+x^2+x^2-x+1\)
\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)+...+\left(x^2-x+1\right)\)
\(=\left(x^{98}+x^{97}+...+x+1\right)\left(x^2-x+1\right)\)
\(=Q\left(x\right).\left(x^{98}+x^{97}+...+x+1\right)\)
\(\Rightarrow P\left(x\right)⋮Q\left(x\right)\)
Câu 1:
Do P(x) bậc 3 và \(x^2-x+1\) bậc 2 nên đa thức thương có bậc 1, gọi đa thức thương có dạng \(ax+b\)
Do \(P\left(x\right)\) chia hết \(x-1\) và \(x-2\) nên \(P\left(1\right)=P\left(2\right)=0\)
Do \(P\left(x\right)\) chia \(x^2-x+1\) dư \(2x-3\)
\(\Rightarrow P\left(x\right)=\left(ax+b\right).\left(x^2-x+1\right)+2x-3\)
Thay \(x=1\) ta được:
\(P\left(1\right)=\left(a+b\right)\left(1-1+1\right)+2-3=0\)
\(\Leftrightarrow a+b=1\)
Thay \(x=2\) ta được:
\(P\left(2\right)=\left(2a+b\right)\left(4-2+1\right)+4-3=0\)
\(\Leftrightarrow3\left(2a+b\right)=-1\Leftrightarrow6a+3b=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\6a+3b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{7}{3}\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=\left(\frac{4}{3}x-\frac{7}{3}\right)\left(x^2-x+1\right)+2x-3\)
Bạn có thể nhân phá ra và rút gọn
Gọi H(x) là thương trong phép chia G(x) cho P(x)
Ta có : G(x) bậc 6, P(x) bậc 2 => H(x) bậc 4
=> H(x) có dạng x4 + mx3 + nx2 + px + 2 ( hệ số mình chọn là 2 chắc bạn biết )
Khi đó G(x) chia hết cho P(x) <=> G(x) = H(x).P(x)
<=> x6 + ax2 + bx + 2 = ( x2 - x + 1 )( x4 + mx3 + nx2 + px + 2 )
<=> x6 + ax2 + bx + 2 = x6 + mx5 + nx4 + px3 + 2x2 - x5 - mx4 - nx3 - px2 - 2x + x4 + mx3 + nx2 + px + 2
<=> x6 + ax2 + bx + 2 = x6 + ( m - 1 )x5 + ( n - m + 1 )x4 + ( p - n + m )x3 + ( 2 - p + n )x2 + ( -2 + p )x + 2
Đồng nhất hệ số ta có :
\(\hept{\begin{cases}m-1=0\\n-m+1=0\\p-n+m=0\end{cases}}\); \(\hept{\begin{cases}2-p+n=a\\-2+p=b\end{cases}}\)
=> \(\hept{\begin{cases}m=1\\n=0\\p=-1\end{cases}}\); \(\hept{\begin{cases}a=3\\b=-3\end{cases}}\)
Vậy a = 3 ; b = -3
Ban dung phuong phap the ban cho x= 1 di roi the vao ta duoc so du la 0 roi the tiep x=x+1=1+1=2 tiep tuc duoc du =0 vay =>>>>>voi moi x thi dc so du luon bang 0