Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, Đáp án nên nó đúng nhoa
b, MinA = 2016,75 .
Câu 2 :
a, - \(\left[{}\begin{matrix}x=\pm1\\x=3\end{matrix}\right.\)
b, - Với m bằng - 3 .
Câu 3 :
a, \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b, Hỏi tí vế 2 là bằng 4 hay - 4 .
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
Lời giải:
a. Để pt có 1 nghiệm kép thì:
$\Delta=(1-y)^2-4(4-y)=0$
$\Leftrightarrow y^2-2y+1-16+4y=0$
$\Leftrightarrow y^2+2y-15=0$
$\Leftrightarrow (y-3)(y+5)=0$
$\Leftrightarrow y=3$ hoặc $y=-5$
b.
Để pt có nghiệm thì: $\Delta=(1-y)^2-4(4-y)\geq 0$
$\Leftrightarrow y^2+2y-15\geq 0$
$\Leftrightarrow (y-3)(y+5)\geq 0$
$\Leftrightarrow y-3\geq 0$ (do $y$ dương)
$\Leftrightarrow y\geq 3$
Do đó $y_{\min}=3$
Thay vào PT ban đầu thì:
$x^2-2x+1=0$
$\Leftrightarrow (x-1)^2=0$
$\Leftrightarrow x=1$
Vậy cặp $(x,y)$ dương thỏa mãn đề là $(1,3)$