Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
a, Xét : n^5-n = n.(n^4-1)=n.(n^2-1).(n^2+1) = n.(n-1).(n+1).(n^2-4+5) = n.(n-1).(n+1).(n-2).(n+2) + 5.(n-1).n(n+1)
Ta thấy n-2;n-1;n-n+1;n+2 là 5 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 5
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 2.5 = 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : n-1 và n là 2 số nguyên liên tiếp nên có 1 số chia hết cho 2 => 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10 => n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng bằng nhau
k mk nha
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
CMR : a)n(n^2+12)+(2_ngày)(n^2_3n+1)(n^2_3n+1)+8 chia hết cho 5 với mọi n thuộc Z
b)n^5_n chia hết cho 30
Ta có: 30=5.6, mà (5;6)=1 nên ta chứng minh n5-n chia hết cho 5 và 6
+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2-4+5)=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)
=(n-2)(n-1)n(n+1)(n+2)+5n(n-1)(n+1)
Vì (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5
5n(n-1)(n+1) chia hết cho 5
=> n5-n chia hết cho 5 (1)
+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2+1)
=(n-1)n(n+1)(n2+1)
Vì (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6
=> (n-1)n(n+1)(n2+1) chai hết cho 6
=> n5-n chia hết cho 6 (2)
Từ (1) và (2) => n5-n chia hết cho 30
Vậy n5-n chia hết cho 30 (đpcm)